Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} + 44 x^{13} - 100 x^{12} + 165 x^{11} + 628 x^{10} - 1694 x^{9} + 3117 x^{8} + 2653 x^{7} - 10970 x^{6} + 23013 x^{5} - 5884 x^{4} - 19543 x^{3} + 57858 x^{2} - 44825 x + 26569 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3767366677314336061820409=3^{14}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{42021} a^{14} - \frac{292}{6003} a^{13} + \frac{85}{42021} a^{12} - \frac{1193}{42021} a^{11} - \frac{2026}{42021} a^{10} + \frac{1621}{42021} a^{9} + \frac{2069}{14007} a^{8} + \frac{4805}{14007} a^{7} + \frac{2549}{14007} a^{6} - \frac{4226}{42021} a^{5} - \frac{13975}{42021} a^{4} - \frac{346}{1827} a^{3} + \frac{6472}{42021} a^{2} + \frac{2567}{6003} a + \frac{19483}{42021}$, $\frac{1}{1393878128769} a^{15} - \frac{1794848}{464626042923} a^{14} - \frac{7694311981}{1393878128769} a^{13} + \frac{32250087883}{199125446967} a^{12} + \frac{11135721551}{464626042923} a^{11} - \frac{173639818315}{1393878128769} a^{10} + \frac{22615085683}{464626042923} a^{9} + \frac{29470913809}{464626042923} a^{8} + \frac{19450854025}{154875347641} a^{7} + \frac{663446059231}{1393878128769} a^{6} - \frac{180855591440}{464626042923} a^{5} + \frac{362207312606}{1393878128769} a^{4} + \frac{83716230988}{199125446967} a^{3} + \frac{112975414486}{464626042923} a^{2} - \frac{643133648911}{1393878128769} a + \frac{396760481}{950155507}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{355380}{33170989} a^{15} + \frac{4974994}{232196923} a^{14} + \frac{382690}{99512967} a^{13} - \frac{329134286}{696590769} a^{12} + \frac{724004653}{696590769} a^{11} - \frac{48980430}{232196923} a^{10} - \frac{1672260158}{232196923} a^{9} + \frac{4014291618}{232196923} a^{8} - \frac{2197305258}{232196923} a^{7} - \frac{9694545180}{232196923} a^{6} + \frac{27048519133}{232196923} a^{5} - \frac{62448949016}{696590769} a^{4} - \frac{38406665960}{696590769} a^{3} + \frac{190893569686}{696590769} a^{2} - \frac{8199919774}{33170989} a + \frac{210075442}{1424521} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38710.9719245 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{93}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-31})\), 4.2.25947.1 x2, 4.0.837.1 x2, 8.0.673246809.1, 8.2.1940970550347.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $31$ | 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |