Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 32 x^{13} - 16 x^{12} + 56 x^{11} + 112 x^{10} - 48 x^{9} - 140 x^{8} + 160 x^{7} + 796 x^{6} + 1088 x^{5} + 812 x^{4} + 368 x^{3} + 104 x^{2} + 16 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(376145144477611196416=2^{52}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} - \frac{1}{17} a^{13} - \frac{4}{17} a^{12} - \frac{1}{17} a^{11} - \frac{8}{17} a^{10} + \frac{8}{17} a^{9} - \frac{6}{17} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{2}{17} a^{5} + \frac{4}{17} a^{4} - \frac{5}{17} a^{3} - \frac{3}{17} a^{2} - \frac{4}{17} a - \frac{2}{17}$, $\frac{1}{210035104455463} a^{15} - \frac{1297213480278}{210035104455463} a^{14} - \frac{38472322970121}{210035104455463} a^{13} + \frac{4234045713958}{9131961063281} a^{12} + \frac{7192643151999}{210035104455463} a^{11} - \frac{54908683503888}{210035104455463} a^{10} - \frac{22290758865693}{210035104455463} a^{9} - \frac{63624980927140}{210035104455463} a^{8} - \frac{30278253375395}{210035104455463} a^{7} - \frac{17500861851197}{210035104455463} a^{6} - \frac{33781331621189}{210035104455463} a^{5} + \frac{51844546256742}{210035104455463} a^{4} + \frac{15634380696612}{210035104455463} a^{3} + \frac{5157851180451}{12355006144439} a^{2} + \frac{93708627339846}{210035104455463} a - \frac{42916894833588}{210035104455463}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{23651664756273}{210035104455463} a^{15} - \frac{171478762099766}{210035104455463} a^{14} + \frac{524104888855284}{210035104455463} a^{13} - \frac{13023253864330}{9131961063281} a^{12} - \frac{758372511704573}{210035104455463} a^{11} + \frac{588656017398921}{210035104455463} a^{10} + \frac{4158613282767815}{210035104455463} a^{9} + \frac{754905987887230}{210035104455463} a^{8} - \frac{4096490916049025}{210035104455463} a^{7} + \frac{482941250505528}{210035104455463} a^{6} + \frac{22082638647124071}{210035104455463} a^{5} + \frac{41050852702123202}{210035104455463} a^{4} + \frac{39339546668118577}{210035104455463} a^{3} + \frac{1264554904208558}{12355006144439} a^{2} + \frac{6975302163852226}{210035104455463} a + \frac{970575072060756}{210035104455463} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31669.2355819 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |