Normalized defining polynomial
\( x^{16} - 11 x^{14} - 12 x^{13} + 83 x^{12} - 96 x^{11} + 219 x^{10} - 294 x^{9} + 1304 x^{8} - 3846 x^{7} + 1788 x^{6} + 1980 x^{5} - 7933 x^{4} + 10752 x^{3} + 26944 x^{2} - 27624 x + 15856 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37319027463036582275390625=3^{8}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(8,·)$, $\chi_{195}(77,·)$, $\chi_{195}(79,·)$, $\chi_{195}(83,·)$, $\chi_{195}(151,·)$, $\chi_{195}(92,·)$, $\chi_{195}(31,·)$, $\chi_{195}(34,·)$, $\chi_{195}(38,·)$, $\chi_{195}(109,·)$, $\chi_{195}(47,·)$, $\chi_{195}(181,·)$, $\chi_{195}(122,·)$, $\chi_{195}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{63684} a^{14} - \frac{505}{10614} a^{13} + \frac{853}{21228} a^{12} - \frac{335}{1769} a^{11} - \frac{10093}{63684} a^{10} - \frac{419}{5307} a^{9} - \frac{1}{36} a^{8} + \frac{1853}{10614} a^{7} - \frac{11083}{31842} a^{6} - \frac{1400}{5307} a^{5} + \frac{6419}{15921} a^{4} - \frac{4987}{10614} a^{3} + \frac{187}{7076} a^{2} + \frac{395}{5307} a + \frac{556}{15921}$, $\frac{1}{7008818593362299112509261208} a^{15} - \frac{120947892106551961507}{292034108056762463021219217} a^{14} - \frac{22448919001411702280103725}{2336272864454099704169753736} a^{13} + \frac{17334447458294512741563347}{292034108056762463021219217} a^{12} + \frac{550888533251635446371880383}{7008818593362299112509261208} a^{11} + \frac{38741901736329746392275911}{194689405371174975347479478} a^{10} + \frac{1564049126839298357650444771}{7008818593362299112509261208} a^{9} + \frac{225924324082050147052848869}{1168136432227049852084876868} a^{8} - \frac{2503676770598561501881091}{1752204648340574778127315302} a^{7} - \frac{2837143442639109013276261}{40280566628518960416719892} a^{6} - \frac{651897036777703073913556765}{1752204648340574778127315302} a^{5} - \frac{126679531560072621268936324}{292034108056762463021219217} a^{4} + \frac{218896202197566118968790811}{778757621484699901389917912} a^{3} - \frac{97824404237402261445430985}{584068216113524926042438434} a^{2} - \frac{809898097130579132293852469}{1752204648340574778127315302} a - \frac{25283649405903831370177795}{292034108056762463021219217}$
Class group and class number
$C_{2}\times C_{26}$, which has order $52$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49732.9681714 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||