Normalized defining polynomial
\( x^{16} - x^{15} + 22 x^{14} - 15 x^{13} + 370 x^{12} - 219 x^{11} + 1996 x^{10} + 855 x^{9} + 6474 x^{8} + 2315 x^{7} + 9134 x^{6} + 8383 x^{5} + 7555 x^{4} + 3230 x^{3} + 1088 x^{2} + 152 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37319027463036582275390625=3^{8}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(194,·)$, $\chi_{195}(131,·)$, $\chi_{195}(8,·)$, $\chi_{195}(73,·)$, $\chi_{195}(14,·)$, $\chi_{195}(79,·)$, $\chi_{195}(83,·)$, $\chi_{195}(148,·)$, $\chi_{195}(47,·)$, $\chi_{195}(112,·)$, $\chi_{195}(116,·)$, $\chi_{195}(181,·)$, $\chi_{195}(122,·)$, $\chi_{195}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{3}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6832} a^{12} + \frac{9}{3416} a^{11} + \frac{365}{3416} a^{10} - \frac{317}{6832} a^{9} - \frac{4}{61} a^{8} + \frac{127}{854} a^{7} - \frac{3}{976} a^{6} - \frac{561}{3416} a^{5} + \frac{83}{3416} a^{4} - \frac{871}{6832} a^{3} + \frac{263}{854} a^{2} + \frac{190}{427} a + \frac{331}{854}$, $\frac{1}{6832} a^{13} - \frac{3}{976} a^{11} + \frac{317}{3416} a^{10} - \frac{293}{6832} a^{9} + \frac{135}{1708} a^{8} - \frac{1229}{6832} a^{7} - \frac{93}{854} a^{6} - \frac{1415}{6832} a^{5} + \frac{419}{3416} a^{4} + \frac{1129}{6832} a^{3} - \frac{85}{244} a^{2} - \frac{52}{427} a - \frac{407}{854}$, $\frac{1}{13664} a^{14} - \frac{1}{13664} a^{12} + \frac{5}{488} a^{11} - \frac{211}{13664} a^{10} + \frac{89}{6832} a^{9} + \frac{59}{13664} a^{8} + \frac{78}{427} a^{7} + \frac{1581}{13664} a^{6} + \frac{113}{488} a^{5} - \frac{1529}{13664} a^{4} - \frac{2641}{6832} a^{3} + \frac{459}{1708} a^{2} + \frac{361}{1708} a + \frac{321}{854}$, $\frac{1}{252487646272736} a^{15} - \frac{81575825}{7890238946023} a^{14} + \frac{769274079}{36069663753248} a^{13} - \frac{1222171313}{63121911568184} a^{12} - \frac{35266109839}{4139141742176} a^{11} + \frac{805569754137}{9017415938312} a^{10} - \frac{1944511138533}{252487646272736} a^{9} - \frac{894585491985}{7890238946023} a^{8} + \frac{50716372151355}{252487646272736} a^{7} + \frac{13534451851359}{63121911568184} a^{6} - \frac{53044949618041}{252487646272736} a^{5} + \frac{13537723235963}{63121911568184} a^{4} - \frac{3652024289927}{31560955784092} a^{3} + \frac{13244661183801}{31560955784092} a^{2} + \frac{2708746940937}{7890238946023} a + \frac{162394140775}{1127176992289}$
Class group and class number
$C_{2}\times C_{104}$, which has order $208$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{338956626409}{36069663753248} a^{15} - \frac{47681578125}{4508707969156} a^{14} + \frac{7515382212485}{36069663753248} a^{13} - \frac{754578187495}{4508707969156} a^{12} + \frac{126404786385895}{36069663753248} a^{11} - \frac{45117193664137}{18034831876624} a^{10} + \frac{691823617577905}{36069663753248} a^{9} + \frac{6275048236910}{1127176992289} a^{8} + \frac{2191277838906415}{36069663753248} a^{7} + \frac{265168896865}{18478311349} a^{6} + \frac{3105601000723861}{36069663753248} a^{5} + \frac{1237294688841905}{18034831876624} a^{4} + \frac{1179778690335745}{18034831876624} a^{3} + \frac{26945925799755}{1127176992289} a^{2} + \frac{10993603275760}{1127176992289} a + \frac{3084568479081}{2254353984578} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136143.590528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |