Normalized defining polynomial
\( x^{16} + 13 x^{14} + 156 x^{12} + 1859 x^{10} + 22139 x^{8} + 24167 x^{6} + 26364 x^{4} + 28561 x^{2} + 28561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372769361959696000000000000=2^{16}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(260=2^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(129,·)$, $\chi_{260}(203,·)$, $\chi_{260}(77,·)$, $\chi_{260}(209,·)$, $\chi_{260}(83,·)$, $\chi_{260}(151,·)$, $\chi_{260}(239,·)$, $\chi_{260}(157,·)$, $\chi_{260}(31,·)$, $\chi_{260}(99,·)$, $\chi_{260}(233,·)$, $\chi_{260}(47,·)$, $\chi_{260}(53,·)$, $\chi_{260}(187,·)$, $\chi_{260}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{507} a^{8} - \frac{1}{39} a^{6} + \frac{1}{39} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{507} a^{9} - \frac{1}{39} a^{7} + \frac{1}{39} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{66417} a^{10} - \frac{119}{393}$, $\frac{1}{66417} a^{11} - \frac{119}{393} a$, $\frac{1}{863421} a^{12} + \frac{142}{393} a^{2}$, $\frac{1}{863421} a^{13} + \frac{142}{393} a^{3}$, $\frac{1}{863421} a^{14} - \frac{119}{5109} a^{4}$, $\frac{1}{863421} a^{15} - \frac{119}{5109} a^{5}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12}{287807} a^{14} - \frac{144}{287807} a^{12} - \frac{132}{22139} a^{10} - \frac{12}{169} a^{8} - \frac{11}{13} a^{6} - \frac{144}{1703} a^{4} - \frac{12}{131} a^{2} - \frac{12}{131} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 426560.11687903176 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||