Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 58 x^{13} - 12 x^{12} - 198 x^{11} + 132 x^{10} + 62 x^{9} + 2251 x^{8} + 1998 x^{7} - 3846 x^{6} + 1288 x^{5} - 12245 x^{4} + 3244 x^{3} + 52255 x^{2} - 57018 x + 26861 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372769361959696000000000000=2^{16}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(260=2^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(129,·)$, $\chi_{260}(203,·)$, $\chi_{260}(207,·)$, $\chi_{260}(209,·)$, $\chi_{260}(83,·)$, $\chi_{260}(21,·)$, $\chi_{260}(27,·)$, $\chi_{260}(161,·)$, $\chi_{260}(229,·)$, $\chi_{260}(103,·)$, $\chi_{260}(109,·)$, $\chi_{260}(47,·)$, $\chi_{260}(181,·)$, $\chi_{260}(183,·)$, $\chi_{260}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{296932804347} a^{14} + \frac{5545469502}{98977601449} a^{13} + \frac{6712698989}{296932804347} a^{12} + \frac{21286620501}{98977601449} a^{11} - \frac{18609957099}{98977601449} a^{10} + \frac{1310348334}{98977601449} a^{9} - \frac{140088565865}{296932804347} a^{8} - \frac{454891779}{1252881031} a^{7} + \frac{2183068138}{98977601449} a^{6} - \frac{5862304061}{98977601449} a^{5} - \frac{98515437958}{296932804347} a^{4} - \frac{10194823519}{98977601449} a^{3} - \frac{41998987519}{296932804347} a^{2} - \frac{14778032202}{98977601449} a + \frac{30409850521}{98977601449}$, $\frac{1}{3256414880610712963031763} a^{15} - \frac{2226210547205}{3256414880610712963031763} a^{14} + \frac{254861051596106922635261}{3256414880610712963031763} a^{13} + \frac{509429877087627067833215}{3256414880610712963031763} a^{12} + \frac{47557247130948160494667}{1085471626870237654343921} a^{11} - \frac{236324098220516516905731}{1085471626870237654343921} a^{10} - \frac{240174292163490054696098}{3256414880610712963031763} a^{9} - \frac{621952214379757974819596}{3256414880610712963031763} a^{8} + \frac{201533268055382713778337}{1085471626870237654343921} a^{7} - \frac{223360049674129525427273}{1085471626870237654343921} a^{6} - \frac{3432198857229170499473}{7771873223414589410577} a^{5} - \frac{861242292546885121133230}{3256414880610712963031763} a^{4} - \frac{1329178424818165270825771}{3256414880610712963031763} a^{3} - \frac{119593447233955067682436}{3256414880610712963031763} a^{2} + \frac{353140827145951817129235}{1085471626870237654343921} a - \frac{52151128711024331083608}{1085471626870237654343921}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103848.79652840877 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||