Normalized defining polynomial
\( x^{16} - 2 x^{15} - 14 x^{14} + 49 x^{13} - 1435 x^{12} + 3947 x^{11} + 7085 x^{10} + 134109 x^{9} - 461910 x^{8} + 1785594 x^{7} + 22643979 x^{6} - 205130504 x^{5} + 1402119634 x^{4} - 2806521416 x^{3} + 7424247588 x^{2} - 6349974312 x + 5672327056 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372286265552058761987916010000000000=2^{10}\cdot 5^{10}\cdot 41^{6}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{820} a^{12} + \frac{1}{164} a^{11} + \frac{91}{410} a^{10} - \frac{36}{205} a^{9} + \frac{93}{820} a^{8} + \frac{5}{41} a^{7} + \frac{147}{410} a^{6} + \frac{75}{164} a^{5} + \frac{231}{820} a^{4} - \frac{91}{410} a^{3} - \frac{47}{205} a^{2} + \frac{9}{205} a - \frac{66}{205}$, $\frac{1}{820} a^{13} + \frac{157}{820} a^{11} + \frac{44}{205} a^{10} - \frac{7}{820} a^{9} + \frac{9}{164} a^{8} + \frac{51}{205} a^{7} + \frac{27}{164} a^{6} - \frac{1}{205} a^{5} - \frac{107}{820} a^{4} - \frac{49}{410} a^{3} + \frac{39}{205} a^{2} + \frac{94}{205} a - \frac{16}{41}$, $\frac{1}{30340} a^{14} + \frac{13}{30340} a^{13} + \frac{9}{30340} a^{12} - \frac{5493}{30340} a^{11} + \frac{973}{6068} a^{10} + \frac{99}{410} a^{9} + \frac{931}{6068} a^{8} + \frac{127}{740} a^{7} + \frac{14409}{30340} a^{6} - \frac{7279}{30340} a^{5} - \frac{8617}{30340} a^{4} + \frac{2252}{7585} a^{3} - \frac{3103}{7585} a^{2} + \frac{331}{1517} a + \frac{2988}{7585}$, $\frac{1}{1823169914989428964165846106578768850713150913526834051540507560} a^{15} - \frac{1413873422090546547289673960499980531174344067203798379817}{455792478747357241041461526644692212678287728381708512885126890} a^{14} + \frac{364762519182443320989371242943064691644055091754883436539279}{911584957494714482082923053289384425356575456763417025770253780} a^{13} - \frac{91792542171401008502057234468127715686876655721705637553}{49274862567281863896374219096723482451706781446671190582175880} a^{12} + \frac{155900855523828786513114363147762462393996148874295243007337057}{1823169914989428964165846106578768850713150913526834051540507560} a^{11} + \frac{552897641202733052310439489685375688524411699607781686037137}{364633982997885792833169221315753770142630182705366810308101512} a^{10} + \frac{444874483581434634350071047349098681062496949376305657285000031}{1823169914989428964165846106578768850713150913526834051540507560} a^{9} - \frac{29258805112481450497227105304965379550611860892667599206358823}{364633982997885792833169221315753770142630182705366810308101512} a^{8} - \frac{10808775100807569486127549767612469487285125417707817150472404}{45579247874735724104146152664469221267828772838170851288512689} a^{7} + \frac{437871079629982001654240240957040417560837169006222452229816243}{911584957494714482082923053289384425356575456763417025770253780} a^{6} + \frac{767342073190325575744889381824085013149567555626458837908573469}{1823169914989428964165846106578768850713150913526834051540507560} a^{5} - \frac{89636598899204655681913745781218406049664854219282265894180701}{227896239373678620520730763322346106339143864190854256442563445} a^{4} - \frac{164394557041306677997196295974704557142008169719505498418389849}{911584957494714482082923053289384425356575456763417025770253780} a^{3} - \frac{4283488529410550872676514548432987223163411212586348033889748}{227896239373678620520730763322346106339143864190854256442563445} a^{2} + \frac{12076005985142316741481492722389371903703076405905726647634519}{91158495749471448208292305328938442535657545676341702577025378} a + \frac{8726746282933843093697845613393854477234773465485734505885593}{20717839943061692774611887574758736939922169471895841494778495}$
Class group and class number
$C_{58}$, which has order $58$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6751361707.36 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{485}) \), 4.0.1025.1, 4.0.9644225.1, \(\Q(\sqrt{5}, \sqrt{97})\), 8.0.93011075850625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |