Normalized defining polynomial
\( x^{16} - 3 x^{15} - 12 x^{13} + 95 x^{12} + 80 x^{11} - 567 x^{10} - 1963 x^{9} + 4237 x^{8} + 4169 x^{7} - 6593 x^{6} - 126 x^{5} + 6113 x^{4} + 2400 x^{3} - 1664 x^{2} + 512 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(370387893043593994140625=5^{12}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{40} a^{13} + \frac{1}{40} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{7}{40} a^{9} - \frac{1}{10} a^{8} + \frac{9}{40} a^{7} - \frac{3}{40} a^{6} + \frac{13}{40} a^{5} - \frac{11}{40} a^{4} + \frac{19}{40} a^{3} + \frac{3}{20} a^{2} - \frac{19}{40} a$, $\frac{1}{9920} a^{14} + \frac{109}{9920} a^{13} + \frac{5}{124} a^{12} - \frac{571}{2480} a^{11} - \frac{1057}{9920} a^{10} + \frac{11}{155} a^{9} + \frac{917}{1984} a^{8} + \frac{4773}{9920} a^{7} - \frac{423}{1984} a^{6} - \frac{679}{9920} a^{5} + \frac{3983}{9920} a^{4} + \frac{1417}{4960} a^{3} + \frac{909}{1984} a^{2} + \frac{237}{620} a + \frac{51}{155}$, $\frac{1}{3186870591311480184287490560} a^{15} + \frac{19627631558419061411377}{637374118262296036857498112} a^{14} - \frac{87447299767185294795253}{398358823913935023035936320} a^{13} + \frac{25223748276339769225494413}{796717647827870046071872640} a^{12} - \frac{627936688528082590031558721}{3186870591311480184287490560} a^{11} - \frac{13251780807679266874274609}{79671764782787004607187264} a^{10} + \frac{155934541345535446804790325}{637374118262296036857498112} a^{9} + \frac{1045353528938431689726775053}{3186870591311480184287490560} a^{8} + \frac{11549319385786962914766497}{637374118262296036857498112} a^{7} + \frac{688678925770971467976348961}{3186870591311480184287490560} a^{6} + \frac{969349213375931093127909943}{3186870591311480184287490560} a^{5} - \frac{627746918933146445771317019}{1593435295655740092143745280} a^{4} - \frac{1185654735127399929080472687}{3186870591311480184287490560} a^{3} + \frac{14121339787603705318589087}{79671764782787004607187264} a^{2} + \frac{4361675445031960639784443}{49794852989241877879492040} a + \frac{301154229914406249199739}{6224356623655234734936505}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{100639453581009463703137}{102802277139080005944757760} a^{15} + \frac{421346612338210509370747}{102802277139080005944757760} a^{14} - \frac{58928205800709690303521}{12850284642385000743094720} a^{13} + \frac{426297054167750012678051}{25700569284770001486189440} a^{12} - \frac{11611651572145943885475871}{102802277139080005944757760} a^{11} + \frac{131660476077817334014383}{2570056928477000148618944} a^{10} + \frac{53266664599291073532770391}{102802277139080005944757760} a^{9} + \frac{138300110135823535657299939}{102802277139080005944757760} a^{8} - \frac{600774136148411814531713333}{102802277139080005944757760} a^{7} + \frac{227635533702177452277987023}{102802277139080005944757760} a^{6} + \frac{447675528782405324273613113}{102802277139080005944757760} a^{5} - \frac{190709956090297498773064909}{51401138569540002972378880} a^{4} - \frac{96319239186646366174982801}{102802277139080005944757760} a^{3} - \frac{19633498213117386134788737}{12850284642385000743094720} a^{2} + \frac{2452703552591567820799641}{803142790149062546443420} a - \frac{534749741664954279342058}{200785697537265636610855} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 361613.952106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.1975.1, 4.2.9875.1, 8.4.121719003125.1, 8.0.121719003125.1, 8.0.97515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.8.6.1 | $x^{8} - 553 x^{4} + 505521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |