Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 42 x^{13} + 115 x^{12} - 508 x^{11} + 1308 x^{10} - 1931 x^{9} + 3538 x^{8} - 8154 x^{7} + 15113 x^{6} - 19304 x^{5} + 17574 x^{4} - 11431 x^{3} + 4722 x^{2} - 1019 x + 101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(370387893043593994140625=5^{12}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{11} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{6} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{11} - \frac{1}{2} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{165971628890} a^{14} - \frac{7}{165971628890} a^{13} - \frac{6554516703}{165971628890} a^{12} + \frac{39327100309}{165971628890} a^{11} - \frac{60409941119}{165971628890} a^{10} - \frac{58448714071}{165971628890} a^{9} + \frac{3777319673}{33194325778} a^{8} + \frac{43857479091}{165971628890} a^{7} + \frac{10565098837}{33194325778} a^{6} + \frac{5769411169}{165971628890} a^{5} - \frac{64012313149}{165971628890} a^{4} + \frac{4857593279}{165971628890} a^{3} - \frac{36892396493}{165971628890} a^{2} + \frac{60794205143}{165971628890} a + \frac{4091278281}{165971628890}$, $\frac{1}{39667219304710} a^{15} + \frac{56}{19833609652355} a^{14} + \frac{345263161901}{19833609652355} a^{13} - \frac{652481962787}{19833609652355} a^{12} - \frac{447573026752}{3966721930471} a^{11} + \frac{691646497524}{19833609652355} a^{10} - \frac{1791941736253}{19833609652355} a^{9} + \frac{548183478259}{19833609652355} a^{8} + \frac{3034264662343}{19833609652355} a^{7} + \frac{1917811555806}{19833609652355} a^{6} + \frac{1409944388183}{3966721930471} a^{5} - \frac{1129717783281}{3966721930471} a^{4} + \frac{9399020190804}{19833609652355} a^{3} + \frac{7694014267304}{19833609652355} a^{2} - \frac{5558930232468}{19833609652355} a - \frac{10334488088189}{39667219304710}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78703.2144954 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1975.1, 8.0.121719003125.1, 8.2.7703734375.1, 8.2.1540746875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.4.3.1 | $x^{4} + 158$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 79.4.3.1 | $x^{4} + 158$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |