Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 31 x^{13} + 99 x^{12} - 90 x^{11} + 187 x^{10} + 338 x^{9} + 1263 x^{8} + 1943 x^{7} + 2252 x^{6} + 1715 x^{5} + 684 x^{4} + 69 x^{3} + 69 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(370387893043593994140625=5^{12}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{5} - \frac{1}{10}$, $\frac{1}{50} a^{11} - \frac{1}{25} a^{10} + \frac{2}{25} a^{9} + \frac{2}{25} a^{8} - \frac{8}{25} a^{7} + \frac{9}{50} a^{6} - \frac{8}{25} a^{5} + \frac{12}{25} a^{4} + \frac{12}{25} a^{3} + \frac{12}{25} a^{2} - \frac{17}{50} a - \frac{2}{25}$, $\frac{1}{50} a^{12} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{17}{50} a^{7} + \frac{6}{25} a^{6} - \frac{9}{25} a^{5} - \frac{9}{25} a^{4} + \frac{6}{25} a^{3} - \frac{9}{50} a^{2} + \frac{1}{25} a + \frac{1}{25}$, $\frac{1}{50} a^{13} + \frac{1}{25} a^{10} + \frac{1}{25} a^{9} - \frac{3}{50} a^{8} + \frac{6}{25} a^{7} + \frac{6}{25} a^{6} - \frac{9}{25} a^{5} - \frac{4}{25} a^{4} - \frac{9}{50} a^{3} - \frac{9}{25} a^{2} + \frac{1}{25} a - \frac{2}{5}$, $\frac{1}{44750} a^{14} + \frac{1}{44750} a^{13} - \frac{439}{44750} a^{12} - \frac{2}{22375} a^{11} - \frac{1019}{44750} a^{10} + \frac{427}{44750} a^{9} + \frac{3967}{44750} a^{8} + \frac{2587}{44750} a^{7} + \frac{2341}{22375} a^{6} + \frac{9577}{44750} a^{5} + \frac{12051}{44750} a^{4} + \frac{15091}{44750} a^{3} - \frac{1749}{44750} a^{2} - \frac{2682}{22375} a + \frac{5071}{44750}$, $\frac{1}{1157015322250} a^{15} + \frac{2004528}{578507661125} a^{14} + \frac{9002686771}{1157015322250} a^{13} + \frac{6191238861}{1157015322250} a^{12} + \frac{1830657431}{1157015322250} a^{11} - \frac{20543327023}{1157015322250} a^{10} + \frac{46057622931}{578507661125} a^{9} - \frac{19236968693}{1157015322250} a^{8} + \frac{153497143177}{1157015322250} a^{7} - \frac{21361325103}{1157015322250} a^{6} - \frac{155651226879}{1157015322250} a^{5} + \frac{32042188803}{578507661125} a^{4} - \frac{131134847289}{1157015322250} a^{3} - \frac{33960784809}{1157015322250} a^{2} + \frac{457966303641}{1157015322250} a + \frac{19006767657}{115701532225}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24561.9499263 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-395}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{5}, \sqrt{-79})\), 4.2.1975.1 x2, 4.0.31205.1 x2, 8.0.24343800625.1, 8.2.7703734375.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |