Properties

Label 16.0.36901758399676416.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{10}\cdot 193^{2}$
Root discriminant $10.85$
Ramified primes $2, 3, 193$
Class number $1$
Class group Trivial
Galois group 16T1439

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 30, -64, 107, -158, 196, -208, 199, -168, 120, -80, 45, -20, 10, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 10*x^14 - 20*x^13 + 45*x^12 - 80*x^11 + 120*x^10 - 168*x^9 + 199*x^8 - 208*x^7 + 196*x^6 - 158*x^5 + 107*x^4 - 64*x^3 + 30*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 + 10*x^14 - 20*x^13 + 45*x^12 - 80*x^11 + 120*x^10 - 168*x^9 + 199*x^8 - 208*x^7 + 196*x^6 - 158*x^5 + 107*x^4 - 64*x^3 + 30*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 10 x^{14} - 20 x^{13} + 45 x^{12} - 80 x^{11} + 120 x^{10} - 168 x^{9} + 199 x^{8} - 208 x^{7} + 196 x^{6} - 158 x^{5} + 107 x^{4} - 64 x^{3} + 30 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(36901758399676416=2^{24}\cdot 3^{10}\cdot 193^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 193$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} - \frac{7}{17} a^{13} - \frac{6}{17} a^{11} - \frac{7}{17} a^{10} + \frac{4}{17} a^{9} - \frac{7}{17} a^{8} - \frac{2}{17} a^{7} - \frac{8}{17} a^{6} - \frac{7}{17} a^{5} - \frac{2}{17} a^{4} + \frac{1}{17} a^{3} + \frac{6}{17} a^{2} + \frac{8}{17} a + \frac{8}{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{22}{17} a^{15} - a^{14} + \frac{186}{17} a^{13} - 12 a^{12} + \frac{650}{17} a^{11} - \frac{885}{17} a^{10} + \frac{1329}{17} a^{9} - \frac{1803}{17} a^{8} + \frac{1877}{17} a^{7} - \frac{1910}{17} a^{6} + \frac{1699}{17} a^{5} - \frac{1183}{17} a^{4} + \frac{719}{17} a^{3} - \frac{429}{17} a^{2} + \frac{91}{17} a + \frac{6}{17} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 199.39677155 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1439:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1439 are not computed
Character table for t16n1439 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\), 8.0.4002048.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$193$$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.4.2.1$x^{4} + 1737 x^{2} + 931225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$