Normalized defining polynomial
\( x^{16} + 384 x^{14} + 56904 x^{12} + 4194048 x^{10} + 168912659 x^{8} + 3842403336 x^{6} + 49972763916 x^{4} + 369389779152 x^{2} + 1411816863601 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(367787275866480643670016000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3120=2^{4}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3120}(1,·)$, $\chi_{3120}(2183,·)$, $\chi_{3120}(781,·)$, $\chi_{3120}(467,·)$, $\chi_{3120}(469,·)$, $\chi_{3120}(1561,·)$, $\chi_{3120}(1247,·)$, $\chi_{3120}(1249,·)$, $\chi_{3120}(2341,·)$, $\chi_{3120}(2027,·)$, $\chi_{3120}(2029,·)$, $\chi_{3120}(623,·)$, $\chi_{3120}(2963,·)$, $\chi_{3120}(2807,·)$, $\chi_{3120}(2809,·)$, $\chi_{3120}(1403,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1188199} a^{11} - \frac{120918}{1188199} a^{9} - \frac{544212}{1188199} a^{7} - \frac{192563}{1188199} a^{5} + \frac{278149}{1188199} a^{3} + \frac{245890}{1188199} a$, $\frac{1}{1071219620251} a^{12} - \frac{36647742675}{1071219620251} a^{10} - \frac{346086078743}{1071219620251} a^{8} + \frac{560241988}{2375209801} a^{6} - \frac{26250602358}{1071219620251} a^{4} + \frac{118106038291}{1071219620251} a^{2} + \frac{245450}{901549}$, $\frac{1}{1071219620251} a^{13} + \frac{224175}{1071219620251} a^{11} - \frac{109372668656}{1071219620251} a^{9} - \frac{97065194}{2375209801} a^{7} + \frac{126167074680}{1071219620251} a^{5} - \frac{12468909575}{1071219620251} a^{3} - \frac{510452980613}{1071219620251} a$, $\frac{1}{48730809271579109815570309} a^{14} - \frac{15611671864730}{48730809271579109815570309} a^{12} - \frac{214009057108032557959840}{48730809271579109815570309} a^{10} + \frac{104159700094335264282240}{48730809271579109815570309} a^{8} - \frac{21322797848593916721873631}{48730809271579109815570309} a^{6} + \frac{20429080755017655453197336}{48730809271579109815570309} a^{4} + \frac{3145313985001283836873625}{48730809271579109815570309} a^{2} - \frac{3361027684193}{34516381357909}$, $\frac{1}{48730809271579109815570309} a^{15} - \frac{15611671864730}{48730809271579109815570309} a^{13} - \frac{6720143349205240602}{48730809271579109815570309} a^{11} - \frac{570698186979996772704165}{48730809271579109815570309} a^{9} - \frac{17328442998778207550785577}{48730809271579109815570309} a^{7} - \frac{10969097690955000064518553}{48730809271579109815570309} a^{5} - \frac{21367591494961035286713511}{48730809271579109815570309} a^{3} - \frac{10927910748134356507}{41012329813086115891} a$
Class group and class number
$C_{2}\times C_{8}\times C_{40}\times C_{40}\times C_{520}$, which has order $13312000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |