Properties

Label 16.0.36778727586...000.80
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 13^{8}$
Root discriminant $167.05$
Ramified primes $2, 3, 5, 13$
Class number $10649600$ (GRH)
Class group $[2, 2, 2, 4, 4, 80, 1040]$ (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![509831700625, 0, 627485170000, 0, 190658955500, 0, 15594306000, 0, 564793775, 0, 10545600, 0, 104780, 0, 520, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 520*x^14 + 104780*x^12 + 10545600*x^10 + 564793775*x^8 + 15594306000*x^6 + 190658955500*x^4 + 627485170000*x^2 + 509831700625)
 
gp: K = bnfinit(x^16 + 520*x^14 + 104780*x^12 + 10545600*x^10 + 564793775*x^8 + 15594306000*x^6 + 190658955500*x^4 + 627485170000*x^2 + 509831700625, 1)
 

Normalized defining polynomial

\( x^{16} + 520 x^{14} + 104780 x^{12} + 10545600 x^{10} + 564793775 x^{8} + 15594306000 x^{6} + 190658955500 x^{4} + 627485170000 x^{2} + 509831700625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(367787275866480643670016000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $167.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3120=2^{4}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{3120}(1,·)$, $\chi_{3120}(2053,·)$, $\chi_{3120}(911,·)$, $\chi_{3120}(467,·)$, $\chi_{3120}(599,·)$, $\chi_{3120}(1561,·)$, $\chi_{3120}(1117,·)$, $\chi_{3120}(1249,·)$, $\chi_{3120}(2471,·)$, $\chi_{3120}(2027,·)$, $\chi_{3120}(493,·)$, $\chi_{3120}(2159,·)$, $\chi_{3120}(2963,·)$, $\chi_{3120}(2677,·)$, $\chi_{3120}(2809,·)$, $\chi_{3120}(1403,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{13} a^{2}$, $\frac{1}{13} a^{3}$, $\frac{1}{845} a^{4}$, $\frac{1}{845} a^{5}$, $\frac{1}{10985} a^{6}$, $\frac{1}{10985} a^{7}$, $\frac{1}{714025} a^{8}$, $\frac{1}{714025} a^{9}$, $\frac{1}{9282325} a^{10}$, $\frac{1}{9282325} a^{11}$, $\frac{1}{1810053375} a^{12} + \frac{1}{27846975} a^{10} + \frac{1}{32955} a^{6} + \frac{1}{39} a^{2} - \frac{1}{3}$, $\frac{1}{1810053375} a^{13} + \frac{1}{27846975} a^{11} + \frac{1}{32955} a^{7} + \frac{1}{39} a^{3} - \frac{1}{3} a$, $\frac{1}{1529495101875} a^{14} + \frac{2}{23530693875} a^{12} - \frac{79}{1810053375} a^{10} + \frac{16}{27846975} a^{8} + \frac{38}{2142075} a^{6} + \frac{4}{32955} a^{4} - \frac{38}{2535} a^{2} - \frac{16}{39}$, $\frac{1}{1529495101875} a^{15} + \frac{2}{23530693875} a^{13} - \frac{79}{1810053375} a^{11} + \frac{16}{27846975} a^{9} + \frac{38}{2142075} a^{7} + \frac{4}{32955} a^{5} - \frac{38}{2535} a^{3} - \frac{16}{39} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{80}\times C_{1040}$, which has order $10649600$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15197.42445606848 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_4$ (as 16T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{5})\), 4.0.389376000.1, 4.0.389376000.15, 4.0.43264000.2, 4.0.43264000.4, 8.8.3317760000.1, 8.0.151613669376000000.27, 8.0.1871773696000000.76, 8.0.606454677504000000.19, 8.0.606454677504000000.17, 8.0.606454677504000000.18, 8.0.606454677504000000.20

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$