Normalized defining polynomial
\( x^{16} - 8 x^{15} + 84 x^{14} - 448 x^{13} + 3038 x^{12} - 12768 x^{11} + 69340 x^{10} - 239384 x^{9} + 1097171 x^{8} - 3076240 x^{7} + 11902356 x^{6} - 25822592 x^{5} + 83442994 x^{4} - 127019952 x^{3} + 338600600 x^{2} - 278944192 x + 606644476 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36778727586648064367001600000000=2^{44}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3120=2^{4}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3120}(1,·)$, $\chi_{3120}(389,·)$, $\chi_{3120}(1249,·)$, $\chi_{3120}(1481,·)$, $\chi_{3120}(781,·)$, $\chi_{3120}(1169,·)$, $\chi_{3120}(2261,·)$, $\chi_{3120}(1561,·)$, $\chi_{3120}(1949,·)$, $\chi_{3120}(3041,·)$, $\chi_{3120}(2341,·)$, $\chi_{3120}(2729,·)$, $\chi_{3120}(2029,·)$, $\chi_{3120}(2809,·)$, $\chi_{3120}(701,·)$, $\chi_{3120}(469,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{124874325034557428258} a^{14} - \frac{7}{124874325034557428258} a^{13} - \frac{13221215906054423196}{62437162517278714129} a^{12} - \frac{14328448339591531972}{62437162517278714129} a^{11} + \frac{3648367798085017238}{62437162517278714129} a^{10} + \frac{333672729037061485}{5429318479763366446} a^{9} + \frac{1299449952016074430}{62437162517278714129} a^{8} + \frac{1477337704707750653}{62437162517278714129} a^{7} - \frac{34003001019190075701}{124874325034557428258} a^{6} + \frac{22886082180876958027}{62437162517278714129} a^{5} + \frac{25738220393679831722}{62437162517278714129} a^{4} + \frac{12934198482901418068}{62437162517278714129} a^{3} - \frac{14278264803108444806}{62437162517278714129} a^{2} - \frac{12991463337843819388}{62437162517278714129} a - \frac{105219211843607409}{790343829332641951}$, $\frac{1}{743222137642002553766262338} a^{15} + \frac{2975873}{743222137642002553766262338} a^{14} + \frac{151829982579897768985664973}{743222137642002553766262338} a^{13} - \frac{136556731919066686189845007}{743222137642002553766262338} a^{12} + \frac{42934797776182518353266353}{743222137642002553766262338} a^{11} - \frac{139827830014326517770541311}{743222137642002553766262338} a^{10} + \frac{330717144366702197044058}{5090562586589058587440153} a^{9} + \frac{149981545143239348308106485}{743222137642002553766262338} a^{8} + \frac{143516257105941155173813236}{371611068821001276883131169} a^{7} + \frac{3664938900376829916018309}{16157002992217446821005703} a^{6} + \frac{16389548681875002617619451}{743222137642002553766262338} a^{5} - \frac{18441487079557441134610956}{371611068821001276883131169} a^{4} + \frac{58726430237719382862249805}{371611068821001276883131169} a^{3} + \frac{65730919142861222167270968}{371611068821001276883131169} a^{2} + \frac{52781364571702657170994328}{371611068821001276883131169} a + \frac{1522937485907458091776592}{4703937580012674390925711}$
Class group and class number
$C_{4}\times C_{24}\times C_{1248}$, which has order $119808$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |