Properties

Label 16.0.367765683359765625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 5^{8}\cdot 11^{6}$
Root discriminant $12.53$
Ramified primes $3, 5, 11$
Class number $1$
Class group Trivial
Galois group $C_2\times D_8$ (as 16T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 14, -17, 71, -83, 180, -174, 217, -186, 165, -122, 71, -38, 14, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 14*x^14 - 38*x^13 + 71*x^12 - 122*x^11 + 165*x^10 - 186*x^9 + 217*x^8 - 174*x^7 + 180*x^6 - 83*x^5 + 71*x^4 - 17*x^3 + 14*x^2 - x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 14*x^14 - 38*x^13 + 71*x^12 - 122*x^11 + 165*x^10 - 186*x^9 + 217*x^8 - 174*x^7 + 180*x^6 - 83*x^5 + 71*x^4 - 17*x^3 + 14*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 14 x^{14} - 38 x^{13} + 71 x^{12} - 122 x^{11} + 165 x^{10} - 186 x^{9} + 217 x^{8} - 174 x^{7} + 180 x^{6} - 83 x^{5} + 71 x^{4} - 17 x^{3} + 14 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(367765683359765625=3^{12}\cdot 5^{8}\cdot 11^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{15} a^{14} + \frac{2}{15} a^{13} + \frac{2}{15} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{7}{15} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{7}{15} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{4}{15} a^{3} - \frac{7}{15} a^{2} + \frac{7}{15} a - \frac{2}{5}$, $\frac{1}{328149855} a^{15} - \frac{411911}{17271045} a^{14} + \frac{1510670}{65629971} a^{13} - \frac{745442}{9943935} a^{12} - \frac{103776052}{328149855} a^{11} - \frac{151158496}{328149855} a^{10} - \frac{67936601}{328149855} a^{9} - \frac{12722528}{29831805} a^{8} - \frac{8470879}{17271045} a^{7} + \frac{2522641}{5966361} a^{6} - \frac{67870777}{328149855} a^{5} - \frac{1088165}{3454209} a^{4} - \frac{1258512}{36461095} a^{3} - \frac{81693311}{328149855} a^{2} + \frac{69782572}{328149855} a + \frac{24013411}{328149855}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{87376}{155595} a^{15} - \frac{429472}{155595} a^{14} + \frac{1542184}{155595} a^{13} - \frac{400762}{14145} a^{12} + \frac{1824122}{31119} a^{11} - \frac{15927718}{155595} a^{10} + \frac{1539970}{10373} a^{9} - \frac{2500459}{14145} a^{8} + \frac{30608162}{155595} a^{7} - \frac{858653}{4715} a^{6} + \frac{25146529}{155595} a^{5} - \frac{16517368}{155595} a^{4} + \frac{9032519}{155595} a^{3} - \frac{693629}{31119} a^{2} + \frac{1172221}{155595} a - \frac{171841}{155595} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 369.495683302 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_8$ (as 16T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2\times D_8$
Character table for $C_2\times D_8$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.2.275.1, 4.2.2475.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.2.606436875.1, 8.2.606436875.2, 8.0.6125625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$