Normalized defining polynomial
\( x^{16} + 32 x^{14} - 328 x^{13} + 4356 x^{12} - 16400 x^{11} + 294176 x^{10} - 556944 x^{9} - 2998808 x^{8} - 63183296 x^{7} + 314280384 x^{6} - 3101634256 x^{5} + 33449145528 x^{4} - 43796710368 x^{3} + 499235025024 x^{2} - 291056903424 x + 1694656660932 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36612584972217083233681138272216794791936=2^{48}\cdot 7^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $342.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4592=2^{4}\cdot 7\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4592}(1,·)$, $\chi_{4592}(4355,·)$, $\chi_{4592}(2715,·)$, $\chi_{4592}(3781,·)$, $\chi_{4592}(2953,·)$, $\chi_{4592}(2295,·)$, $\chi_{4592}(4173,·)$, $\chi_{4592}(1231,·)$, $\chi_{4592}(155,·)$, $\chi_{4592}(2141,·)$, $\chi_{4592}(3935,·)$, $\chi_{4592}(3107,·)$, $\chi_{4592}(2533,·)$, $\chi_{4592}(1065,·)$, $\chi_{4592}(4017,·)$, $\chi_{4592}(2871,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{72} a^{8} - \frac{1}{12} a^{4} - \frac{1}{18} a^{2} + \frac{1}{4}$, $\frac{1}{648} a^{9} + \frac{1}{27} a^{7} - \frac{13}{108} a^{5} + \frac{11}{162} a^{3} + \frac{5}{36} a$, $\frac{1}{7128} a^{10} + \frac{1}{297} a^{8} - \frac{4}{99} a^{7} - \frac{49}{1188} a^{6} + \frac{14}{99} a^{5} + \frac{281}{1782} a^{4} + \frac{5}{99} a^{3} + \frac{29}{396} a^{2} + \frac{16}{33} a - \frac{4}{11}$, $\frac{1}{7128} a^{11} + \frac{1}{3564} a^{9} + \frac{1}{792} a^{8} - \frac{5}{1188} a^{7} + \frac{1}{33} a^{6} - \frac{140}{891} a^{5} + \frac{1}{44} a^{4} + \frac{173}{3564} a^{3} + \frac{41}{198} a^{2} - \frac{61}{198} a - \frac{1}{4}$, $\frac{1}{84103272} a^{12} - \frac{587}{14017212} a^{11} - \frac{3133}{84103272} a^{10} - \frac{12751}{28034424} a^{9} + \frac{2437}{1218888} a^{8} + \frac{4207}{778734} a^{7} - \frac{913655}{42051636} a^{6} - \frac{1642567}{14017212} a^{5} + \frac{37739}{1911438} a^{4} - \frac{11180}{152361} a^{3} + \frac{102647}{424764} a^{2} + \frac{542605}{1557468} a + \frac{6559}{15732}$, $\frac{1}{252309816} a^{13} - \frac{1}{252309816} a^{12} + \frac{8453}{252309816} a^{11} - \frac{13883}{252309816} a^{10} - \frac{194}{318573} a^{9} + \frac{15361}{84103272} a^{8} - \frac{5806109}{126154908} a^{7} + \frac{2441171}{126154908} a^{6} - \frac{17157139}{126154908} a^{5} - \frac{5922979}{63077454} a^{4} + \frac{6480391}{42051636} a^{3} - \frac{465505}{14017212} a^{2} + \frac{923683}{2336202} a - \frac{216089}{519156}$, $\frac{1}{293207762170415664} a^{14} + \frac{52401787}{73301940542603916} a^{13} - \frac{773555}{708231309590376} a^{12} + \frac{1931942632277}{73301940542603916} a^{11} - \frac{967937513233}{18325485135650979} a^{10} - \frac{4677187092511}{12216990090433986} a^{9} - \frac{424469555467}{1409652702742383} a^{8} - \frac{243282175686520}{18325485135650979} a^{7} + \frac{2238827140827857}{48867960361735944} a^{6} + \frac{2779366346860043}{36650970271301958} a^{5} + \frac{9337496072268961}{73301940542603916} a^{4} + \frac{1634400503993}{29870391419154} a^{3} - \frac{467063815609525}{8144660060289324} a^{2} - \frac{222850915390672}{678721671690777} a - \frac{18724981647512}{75413519076753}$, $\frac{1}{1041471973390582093196599996033377081648} a^{15} + \frac{294874868462561165}{183325466183872926103960569623900208} a^{14} - \frac{63876050799341789236181374987}{173578662231763682199433332672229513608} a^{13} + \frac{447396398339301761570977105777}{520735986695291046598299998016688540824} a^{12} - \frac{7732819974296259547087513569428945}{520735986695291046598299998016688540824} a^{11} - \frac{169661182017434472448243620758867}{28929777038627280366572222112038252268} a^{10} - \frac{7557082777472613037256335603979069}{27407157194489002452542105158773081096} a^{9} + \frac{461699647334324328829721341870877387}{260367993347645523299149999008344270412} a^{8} - \frac{773743005079909539868537730752446233}{19286518025751520244381481408025501512} a^{7} + \frac{4196929521836454936793328343627729755}{520735986695291046598299998016688540824} a^{6} + \frac{8581558851011814761675575297429381585}{65091998336911380824787499752086067603} a^{5} + \frac{140106947457206104630904942807750927}{86789331115881841099716666336114756804} a^{4} + \frac{89445868083555011074481262910568890}{2410814753218940030547685176003187689} a^{3} + \frac{267133481044209853804022924480471995}{9643259012875760122190740704012750756} a^{2} + \frac{683766868230234978080926667678754653}{3214419670958586707396913568004250252} a + \frac{72752613795564731391815809775565179}{178578870608810372633161864889125014}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{24}\times C_{24}\times C_{840}$, which has order $123863040$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 411276342.2126948 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.5 | $x^{8} - 15$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.5 | $x^{8} - 15$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |