Normalized defining polynomial
\( x^{16} + 78 x^{14} - 32 x^{13} + 2501 x^{12} - 1720 x^{11} + 42462 x^{10} - 35572 x^{9} + 409672 x^{8} - 334160 x^{7} + 2239790 x^{6} - 1357128 x^{5} + 6371904 x^{4} - 1825304 x^{3} + 9659452 x^{2} - 1797280 x + 9287425 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3657406027372345478303568625664=2^{32}\cdot 41^{4}\cdot 569^{3}\cdot 1279^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 569, 1279$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{606072605} a^{14} + \frac{266246417}{606072605} a^{13} - \frac{260601523}{606072605} a^{12} + \frac{188640517}{606072605} a^{11} + \frac{11140775}{121214521} a^{10} + \frac{3277499}{121214521} a^{9} - \frac{214595798}{606072605} a^{8} - \frac{140882203}{606072605} a^{7} - \frac{290814334}{606072605} a^{6} + \frac{276066752}{606072605} a^{5} + \frac{265676284}{606072605} a^{4} - \frac{44115716}{121214521} a^{3} + \frac{63777889}{606072605} a^{2} + \frac{225497644}{606072605} a - \frac{55265565}{121214521}$, $\frac{1}{842870261665440265388515925403015764825} a^{15} + \frac{18844523562602888124074159115}{33714810466617610615540637016120630593} a^{14} + \frac{265428932974045828513414524942212453938}{842870261665440265388515925403015764825} a^{13} - \frac{298265028421853355125172904991535653437}{842870261665440265388515925403015764825} a^{12} + \frac{284302649733237041378861284289988999996}{842870261665440265388515925403015764825} a^{11} + \frac{15228437798799380102770952651563178331}{33714810466617610615540637016120630593} a^{10} + \frac{100901609371413937821309327908740449987}{842870261665440265388515925403015764825} a^{9} - \frac{273953249986569602320323716826824603872}{842870261665440265388515925403015764825} a^{8} + \frac{416718400896713759123490102712708559967}{842870261665440265388515925403015764825} a^{7} + \frac{22311565258118483610998599272439594702}{168574052333088053077703185080603152965} a^{6} + \frac{369931275933563858045105880599013976}{911211093692367854474071270705962989} a^{5} + \frac{238449268230938659951473146105402520092}{842870261665440265388515925403015764825} a^{4} + \frac{335958017897484762034944420210626746469}{842870261665440265388515925403015764825} a^{3} + \frac{301654605337949595200510913296842675071}{842870261665440265388515925403015764825} a^{2} - \frac{186979372320303074236523406161866203383}{842870261665440265388515925403015764825} a + \frac{24407554804810650696680860193356766187}{168574052333088053077703185080603152965}$
Class group and class number
$C_{2}\times C_{2}\times C_{6174}$, which has order $24696$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14950.5276193 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 148 conjugacy class representatives for t16n1781 are not computed |
| Character table for t16n1781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.3917778944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 569 | Data not computed | ||||||
| 1279 | Data not computed | ||||||