Properties

Label 16.0.36520347436...0000.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{44}\cdot 3^{12}\cdot 5^{8}$
Root discriminant $34.29$
Ramified primes $2, 3, 5$
Class number $16$ (GRH)
Class group $[2, 8]$ (GRH)
Galois group $(C_2^2\times C_4):C_2$ (as 16T37)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2401, 0, 6076, 0, 3386, 0, -920, 0, 931, 0, -112, 0, 62, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 62*x^12 - 112*x^10 + 931*x^8 - 920*x^6 + 3386*x^4 + 6076*x^2 + 2401)
 
gp: K = bnfinit(x^16 - 4*x^14 + 62*x^12 - 112*x^10 + 931*x^8 - 920*x^6 + 3386*x^4 + 6076*x^2 + 2401, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} + 62 x^{12} - 112 x^{10} + 931 x^{8} - 920 x^{6} + 3386 x^{4} + 6076 x^{2} + 2401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3652034743605657600000000=2^{44}\cdot 3^{12}\cdot 5^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{44} a^{12} + \frac{1}{44} a^{10} - \frac{1}{22} a^{8} - \frac{15}{44} a^{6} + \frac{1}{11} a^{4} + \frac{3}{44} a^{2} - \frac{21}{44}$, $\frac{1}{308} a^{13} - \frac{8}{77} a^{11} + \frac{5}{77} a^{9} - \frac{1}{4} a^{8} - \frac{5}{22} a^{7} - \frac{3}{11} a^{5} + \frac{1}{4} a^{4} + \frac{51}{154} a^{3} - \frac{1}{2} a^{2} + \frac{89}{308} a - \frac{1}{4}$, $\frac{1}{136159112012} a^{14} - \frac{43072327}{136159112012} a^{12} - \frac{16988864369}{136159112012} a^{10} - \frac{1}{4} a^{9} - \frac{172960209}{884150078} a^{8} + \frac{1099919159}{2778757388} a^{6} + \frac{1}{4} a^{5} + \frac{5922605564}{34039778003} a^{4} - \frac{1}{2} a^{3} + \frac{15340315367}{68079556006} a^{2} - \frac{1}{4} a + \frac{919325037}{2778757388}$, $\frac{1}{953113784084} a^{15} - \frac{43072327}{953113784084} a^{13} - \frac{59554099189}{476556892042} a^{11} + \frac{2748604855}{12378101092} a^{9} - \frac{1982760588}{4862825429} a^{7} + \frac{125809756265}{953113784084} a^{5} - \frac{3359147269}{953113784084} a^{3} + \frac{4280453927}{9725650858} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33671.7128484 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^2\times C_4):C_2$ (as 16T37):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$
Character table for $(C_2^2\times C_4):C_2$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), 4.0.13824.1, 4.0.345600.1, \(\Q(\sqrt{3}, \sqrt{5})\), 8.0.119439360000.23, 8.0.29859840000.1, 8.8.13271040000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$