Properties

Label 16.0.36386861507...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{14}\cdot 5^{8}\cdot 41^{7}$
Root discriminant $29.69$
Ramified primes $3, 5, 41$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_4.D_4:C_4$ (as 16T289)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![529, -1748, 2736, -1156, 3140, -5175, 3355, -893, 912, -806, 334, -174, 80, -4, 3, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 3*x^14 - 4*x^13 + 80*x^12 - 174*x^11 + 334*x^10 - 806*x^9 + 912*x^8 - 893*x^7 + 3355*x^6 - 5175*x^5 + 3140*x^4 - 1156*x^3 + 2736*x^2 - 1748*x + 529)
 
gp: K = bnfinit(x^16 - 5*x^15 + 3*x^14 - 4*x^13 + 80*x^12 - 174*x^11 + 334*x^10 - 806*x^9 + 912*x^8 - 893*x^7 + 3355*x^6 - 5175*x^5 + 3140*x^4 - 1156*x^3 + 2736*x^2 - 1748*x + 529, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 3 x^{14} - 4 x^{13} + 80 x^{12} - 174 x^{11} + 334 x^{10} - 806 x^{9} + 912 x^{8} - 893 x^{7} + 3355 x^{6} - 5175 x^{5} + 3140 x^{4} - 1156 x^{3} + 2736 x^{2} - 1748 x + 529 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(363868615074348706640625=3^{14}\cdot 5^{8}\cdot 41^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{5}$, $\frac{1}{107713536124820301091511661} a^{15} + \frac{5269222674130389244024826}{107713536124820301091511661} a^{14} - \frac{3866226649435239983939336}{35904512041606767030503887} a^{13} - \frac{13480280880007840980751885}{107713536124820301091511661} a^{12} - \frac{660059525655174835843887}{35904512041606767030503887} a^{11} - \frac{16676771809045189730799169}{107713536124820301091511661} a^{10} - \frac{2373366178504820341495684}{107713536124820301091511661} a^{9} + \frac{5926454718610055039001692}{35904512041606767030503887} a^{8} - \frac{2061674942906774764560684}{35904512041606767030503887} a^{7} - \frac{4310395538383062637443854}{107713536124820301091511661} a^{6} + \frac{6467939640671954061441401}{107713536124820301091511661} a^{5} + \frac{563707498177148996337947}{1561065740939424653500169} a^{4} - \frac{29756727219303838700592472}{107713536124820301091511661} a^{3} + \frac{10232872966235742684133081}{35904512041606767030503887} a^{2} - \frac{35744147090344146081326803}{107713536124820301091511661} a + \frac{1129934271011336342439325}{4683197222818273960500507}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 42948.4630687 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T289):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.9225.1, 8.8.31402130625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R $16$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$