Normalized defining polynomial
\( x^{16} + 712 x^{14} + 133856 x^{12} + 9597760 x^{10} + 259143525 x^{8} + 2571346704 x^{6} + 8488999068 x^{4} + 9471488224 x^{2} + 2225008900 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3613016314808050004408591512141771336587411456=2^{48}\cdot 3^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $703.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4272=2^{4}\cdot 3\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4272}(1,·)$, $\chi_{4272}(1283,·)$, $\chi_{4272}(3661,·)$, $\chi_{4272}(3025,·)$, $\chi_{4272}(853,·)$, $\chi_{4272}(2135,·)$, $\chi_{4272}(1369,·)$, $\chi_{4272}(1501,·)$, $\chi_{4272}(479,·)$, $\chi_{4272}(2747,·)$, $\chi_{4272}(37,·)$, $\chi_{4272}(2099,·)$, $\chi_{4272}(3383,·)$, $\chi_{4272}(1657,·)$, $\chi_{4272}(635,·)$, $\chi_{4272}(767,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{2225} a^{8} + \frac{1}{25} a^{6} + \frac{11}{25} a^{4} + \frac{4}{25} a^{2}$, $\frac{1}{2225} a^{9} + \frac{1}{25} a^{7} + \frac{1}{25} a^{5} + \frac{4}{25} a^{3} + \frac{2}{5} a$, $\frac{1}{2225} a^{10} + \frac{2}{25} a^{6} - \frac{11}{25} a^{2}$, $\frac{1}{2225} a^{11} + \frac{2}{25} a^{7} - \frac{11}{25} a^{3}$, $\frac{1}{445000} a^{12} + \frac{11}{111250} a^{10} + \frac{29}{222500} a^{8} - \frac{29}{625} a^{6} - \frac{231}{5000} a^{4} - \frac{241}{1250} a^{2} - \frac{33}{100}$, $\frac{1}{23585000} a^{13} + \frac{1011}{5896250} a^{11} + \frac{1629}{11792500} a^{9} + \frac{121}{33125} a^{7} + \frac{7969}{265000} a^{5} - \frac{5541}{66250} a^{3} - \frac{193}{5300} a$, $\frac{1}{83844878737240337800625000} a^{14} + \frac{21300691730957446503}{83844878737240337800625000} a^{12} - \frac{7108573868641398497073}{41922439368620168900312500} a^{10} - \frac{2800563560524732614613}{41922439368620168900312500} a^{8} + \frac{53777081600199997958281}{942077289182475705625000} a^{6} - \frac{172648593587509687863193}{942077289182475705625000} a^{4} - \frac{223978956028210333030263}{471038644591237852812500} a^{2} - \frac{104282897609201565599}{355500863842443662500}$, $\frac{1}{167689757474480675601250000} a^{15} + \frac{1762824269417631689}{83844878737240337800625000} a^{13} + \frac{13474926147836089561677}{83844878737240337800625000} a^{11} - \frac{6457281568421127406369}{41922439368620168900312500} a^{9} + \frac{111937022924823781143281}{1884154578364951411250000} a^{7} + \frac{50108047227378972644341}{942077289182475705625000} a^{5} + \frac{462884263001775067285987}{942077289182475705625000} a^{3} - \frac{1048205118604050816811}{18841545783649514112500} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{29438152}$, which has order $1884041728$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 785482214.9308017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 3 | Data not computed | ||||||
| 89 | Data not computed | ||||||