Normalized defining polynomial
\( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1366 x^{12} - 4920 x^{11} + 18684 x^{10} - 54040 x^{9} + 169097 x^{8} - 396544 x^{7} + 1046352 x^{6} - 1934192 x^{5} + 4331632 x^{4} - 5816080 x^{3} + 11014984 x^{2} - 8376112 x + 13289086 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(361145675909660668917421441024=2^{62}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(736=2^{5}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{736}(1,·)$, $\chi_{736}(645,·)$, $\chi_{736}(321,·)$, $\chi_{736}(137,·)$, $\chi_{736}(461,·)$, $\chi_{736}(597,·)$, $\chi_{736}(185,·)$, $\chi_{736}(93,·)$, $\chi_{736}(229,·)$, $\chi_{736}(689,·)$, $\chi_{736}(553,·)$, $\chi_{736}(45,·)$, $\chi_{736}(413,·)$, $\chi_{736}(369,·)$, $\chi_{736}(505,·)$, $\chi_{736}(277,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} + \frac{3}{17} a^{10} - \frac{3}{17} a^{9} + \frac{8}{17} a^{8} - \frac{5}{17} a^{7} + \frac{4}{17} a^{6} - \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{6}{17} a^{2} - \frac{2}{17} a - \frac{4}{17}$, $\frac{1}{17} a^{12} + \frac{5}{17} a^{10} + \frac{5}{17} a^{8} + \frac{2}{17} a^{7} + \frac{3}{17} a^{6} - \frac{1}{17} a^{5} + \frac{4}{17} a^{4} - \frac{6}{17} a^{3} - \frac{1}{17} a^{2} + \frac{2}{17} a - \frac{5}{17}$, $\frac{1}{17} a^{13} + \frac{2}{17} a^{10} + \frac{3}{17} a^{9} - \frac{4}{17} a^{8} - \frac{6}{17} a^{7} - \frac{4}{17} a^{6} - \frac{3}{17} a^{5} - \frac{5}{17} a^{4} - \frac{1}{17} a^{3} - \frac{2}{17} a^{2} + \frac{5}{17} a + \frac{3}{17}$, $\frac{1}{7814377697137553} a^{14} - \frac{7}{7814377697137553} a^{13} + \frac{65747311996591}{7814377697137553} a^{12} + \frac{65185404322754}{7814377697137553} a^{11} + \frac{891444755883213}{7814377697137553} a^{10} - \frac{184674588300918}{459669276302209} a^{9} + \frac{3304333364386512}{7814377697137553} a^{8} - \frac{2397202253043803}{7814377697137553} a^{7} + \frac{68942615300433}{459669276302209} a^{6} + \frac{3842069189556940}{7814377697137553} a^{5} + \frac{3584549717675991}{7814377697137553} a^{4} - \frac{3373069998310917}{7814377697137553} a^{3} - \frac{849373051983961}{7814377697137553} a^{2} + \frac{511113310942603}{7814377697137553} a - \frac{668676592060674}{7814377697137553}$, $\frac{1}{396478081219668026561} a^{15} + \frac{25361}{396478081219668026561} a^{14} + \frac{10644167509365770619}{396478081219668026561} a^{13} + \frac{2447542088742389706}{396478081219668026561} a^{12} + \frac{9298355177244940146}{396478081219668026561} a^{11} - \frac{197093415540712186280}{396478081219668026561} a^{10} - \frac{77030096775921270421}{396478081219668026561} a^{9} - \frac{115548125278671605912}{396478081219668026561} a^{8} + \frac{35109971832332073723}{396478081219668026561} a^{7} + \frac{29403877355702895890}{396478081219668026561} a^{6} + \frac{89080691127159117870}{396478081219668026561} a^{5} - \frac{187573098280870951313}{396478081219668026561} a^{4} + \frac{164907657582528170937}{396478081219668026561} a^{3} - \frac{59032413951863323995}{396478081219668026561} a^{2} - \frac{92804187012462096461}{396478081219668026561} a + \frac{165470094922149227679}{396478081219668026561}$
Class group and class number
$C_{30840}$, which has order $30840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-46}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{2}, \sqrt{-23})\), \(\Q(\zeta_{16})^+\), 4.0.1083392.5, 8.0.1173738225664.2, \(\Q(\zeta_{32})^+\), 8.0.600953971539968.31 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $23$ | 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |