Normalized defining polynomial
\( x^{16} - 2 x^{15} - 38 x^{14} + 143 x^{13} + 840 x^{12} - 3500 x^{11} - 11651 x^{10} + 65836 x^{9} + 70664 x^{8} - 642987 x^{7} + 237830 x^{6} + 1961670 x^{5} + 71005 x^{4} - 5494616 x^{3} + 824640 x^{2} + 1342760 x + 4856944 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3608687842491875308187596442857=29^{15}\cdot 53^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{39} a^{12} - \frac{2}{39} a^{11} + \frac{6}{13} a^{10} - \frac{8}{39} a^{9} - \frac{2}{39} a^{8} - \frac{14}{39} a^{7} - \frac{6}{13} a^{6} + \frac{19}{39} a^{5} - \frac{1}{13} a^{4} - \frac{6}{13} a^{3} - \frac{10}{39} a^{2} + \frac{4}{39} a - \frac{16}{39}$, $\frac{1}{390} a^{13} + \frac{1}{195} a^{12} + \frac{44}{195} a^{11} + \frac{103}{390} a^{10} - \frac{19}{39} a^{9} - \frac{10}{39} a^{8} - \frac{7}{78} a^{7} - \frac{7}{195} a^{6} - \frac{61}{195} a^{5} - \frac{49}{130} a^{4} - \frac{41}{195} a^{3} + \frac{7}{65} a^{2} - \frac{3}{10} a - \frac{71}{195}$, $\frac{1}{50700} a^{14} + \frac{2}{4225} a^{13} + \frac{7}{8450} a^{12} - \frac{11821}{50700} a^{11} + \frac{1441}{8450} a^{10} - \frac{334}{2535} a^{9} - \frac{1437}{3380} a^{8} - \frac{10487}{25350} a^{7} - \frac{1052}{2535} a^{6} + \frac{12229}{50700} a^{5} - \frac{3589}{12675} a^{4} - \frac{5531}{25350} a^{3} - \frac{3981}{16900} a^{2} + \frac{4897}{25350} a - \frac{2956}{12675}$, $\frac{1}{134273886061627311831947467053827162583000} a^{15} - \frac{13803548144149408976391165579260153}{16784235757703413978993433381728395322875} a^{14} + \frac{2026522675676009800340320794679047737}{1918198372308961597599249529340388036900} a^{13} + \frac{433285904215196040539452148406873347921}{44757962020542437277315822351275720861000} a^{12} + \frac{7028479658904216745228750520459800526709}{22378981010271218638657911175637860430500} a^{11} - \frac{3721356709624302835435567161930276147149}{11189490505135609319328955587818930215250} a^{10} + \frac{2814399036304159690644670282518317940579}{8951592404108487455463164470255144172200} a^{9} + \frac{411481858180560312409591723848363486923}{3196997287181602662665415882233980061500} a^{8} + \frac{628284478915705969052910322012174955203}{1291095058284877998384110260132953486375} a^{7} - \frac{60439658524763704536132465316064111116451}{134273886061627311831947467053827162583000} a^{6} + \frac{1083244356427772433714898305735197426123}{5594745252567804659664477793909465107625} a^{5} + \frac{9921095143561791636384793304586690730571}{22378981010271218638657911175637860430500} a^{4} + \frac{55900095995595624326965401118237513949033}{134273886061627311831947467053827162583000} a^{3} - \frac{3696084252602608271764393922091787702553}{9590991861544807987996247646701940184500} a^{2} + \frac{185591963424321650345384436942183869422}{430365019428292666128036753377651162125} a - \frac{7320599551486095059194604074710711629756}{16784235757703413978993433381728395322875}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 390093291.819 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 8.0.914243444377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |