Normalized defining polynomial
\( x^{16} - 3 x^{15} + 45 x^{14} - 304 x^{13} + 1454 x^{12} - 5013 x^{11} + 14350 x^{10} - 33518 x^{9} + 65483 x^{8} - 201758 x^{7} + 330810 x^{6} + 184957 x^{5} - 1276890 x^{4} + 1077282 x^{3} + 3509953 x^{2} - 5019549 x + 1693277 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3608687842491875308187596442857=29^{15}\cdot 53^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{546} a^{14} - \frac{127}{546} a^{13} + \frac{34}{273} a^{12} - \frac{193}{546} a^{11} - \frac{235}{546} a^{10} - \frac{31}{91} a^{9} - \frac{71}{182} a^{8} + \frac{193}{546} a^{7} - \frac{115}{273} a^{6} + \frac{19}{78} a^{5} + \frac{47}{182} a^{4} + \frac{76}{273} a^{3} + \frac{1}{546} a^{2} - \frac{185}{546} a - \frac{82}{273}$, $\frac{1}{3440292942139331454307186243922088714389106208314} a^{15} - \frac{1539196961528737853235933944933402904714133333}{1720146471069665727153593121961044357194553104157} a^{14} - \frac{43530460403027133653971362610944641520233079654}{573382157023221909051197707320348119064851034719} a^{13} - \frac{203042422576654759288738173188368562759651501917}{1146764314046443818102395414640696238129702069438} a^{12} - \frac{106654321694082062171957695502178285050225932477}{573382157023221909051197707320348119064851034719} a^{11} + \frac{49299729271633500115195528384605932667353560652}{132318959313051209781045624766234181322657931089} a^{10} - \frac{444771797054786658302285378851027469178149718671}{1146764314046443818102395414640696238129702069438} a^{9} + \frac{437600220119337111697165947950182521607954595624}{1720146471069665727153593121961044357194553104157} a^{8} + \frac{276494631090530440914229125262700930200210952141}{573382157023221909051197707320348119064851034719} a^{7} - \frac{14005481528171165999553658439570610058937080621}{88212639542034139854030416510822787548438620726} a^{6} + \frac{646256907883436834204429753533776987895522603444}{1720146471069665727153593121961044357194553104157} a^{5} + \frac{531014526097815439346827094677479711840287793256}{1720146471069665727153593121961044357194553104157} a^{4} - \frac{898348897480786174715271894371093203719481451911}{3440292942139331454307186243922088714389106208314} a^{3} - \frac{27898751934537676212479411592651942271676387206}{81911736717603129864456815331478302723550147817} a^{2} + \frac{152448162515724235281037647962248842376993593885}{573382157023221909051197707320348119064851034719} a - \frac{563475866570293097839215282575308986926635148435}{1720146471069665727153593121961044357194553104157}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 211738394.027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 8.0.914243444377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 53 | Data not computed | ||||||