Normalized defining polynomial
\( x^{16} + 576 x^{14} + 134784 x^{12} + 16422912 x^{10} + 1108546560 x^{8} + 40633270272 x^{6} + 731398864896 x^{4} + 5015306502144 x^{2} + 17072903371969 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3604655294407338976901437849600000000=2^{64}\cdot 5^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4640=2^{5}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4640}(1,·)$, $\chi_{4640}(579,·)$, $\chi_{4640}(581,·)$, $\chi_{4640}(1159,·)$, $\chi_{4640}(1161,·)$, $\chi_{4640}(1739,·)$, $\chi_{4640}(1741,·)$, $\chi_{4640}(2319,·)$, $\chi_{4640}(2321,·)$, $\chi_{4640}(2899,·)$, $\chi_{4640}(2901,·)$, $\chi_{4640}(3479,·)$, $\chi_{4640}(3481,·)$, $\chi_{4640}(4059,·)$, $\chi_{4640}(4061,·)$, $\chi_{4640}(4639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{199801} a^{8} + \frac{288}{199801} a^{6} + \frac{25920}{199801} a^{4} - \frac{52708}{199801} a^{2} - \frac{37385}{199801}$, $\frac{1}{825565144537} a^{9} - \frac{128763552371}{825565144537} a^{7} - \frac{251374607205}{825565144537} a^{5} + \frac{63460341310}{825565144537} a^{3} + \frac{316710921347}{825565144537} a$, $\frac{1}{825565144537} a^{10} + \frac{360}{825565144537} a^{8} - \frac{317902924842}{825565144537} a^{6} - \frac{20733176323}{117937877791} a^{4} - \frac{23949313533}{48562655561} a^{2} + \frac{10876}{199801}$, $\frac{1}{825565144537} a^{11} - \frac{194672165354}{825565144537} a^{7} + \frac{363125605006}{825565144537} a^{5} - \frac{19576736375}{117937877791} a^{3} - \frac{43002792002}{825565144537} a$, $\frac{1}{825565144537} a^{12} - \frac{85536}{825565144537} a^{8} + \frac{290254764074}{825565144537} a^{6} - \frac{90891682209}{825565144537} a^{4} + \frac{5660678749}{35894136719} a^{2} + \frac{88726}{199801}$, $\frac{1}{825565144537} a^{13} + \frac{235632426335}{825565144537} a^{7} + \frac{174895897076}{825565144537} a^{5} + \frac{183124572612}{825565144537} a^{3} - \frac{368239402401}{825565144537} a$, $\frac{1}{825565144537} a^{14} + \frac{455036}{825565144537} a^{8} + \frac{9230014998}{825565144537} a^{6} + \frac{5798599446}{35894136719} a^{4} + \frac{345234555200}{825565144537} a^{2} + \frac{77725}{199801}$, $\frac{1}{825565144537} a^{15} + \frac{7372660770}{117937877791} a^{7} + \frac{14522983811}{117937877791} a^{5} + \frac{222991833226}{825565144537} a^{3} + \frac{229804851238}{825565144537} a$
Class group and class number
$C_{5}\times C_{30}\times C_{323040}$, which has order $48456000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 29 | Data not computed | ||||||