Properties

Label 16.0.36004060626...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}$
Root discriminant $25.69$
Ramified primes $2, 3, 5, 11$
Class number $8$ (GRH)
Class group $[2, 4]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![256, 0, 368, 0, 9473, 0, -7740, 0, 5156, 0, -1710, 0, 308, 0, -28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 28*x^14 + 308*x^12 - 1710*x^10 + 5156*x^8 - 7740*x^6 + 9473*x^4 + 368*x^2 + 256)
 
gp: K = bnfinit(x^16 - 28*x^14 + 308*x^12 - 1710*x^10 + 5156*x^8 - 7740*x^6 + 9473*x^4 + 368*x^2 + 256, 1)
 

Normalized defining polynomial

\( x^{16} - 28 x^{14} + 308 x^{12} - 1710 x^{10} + 5156 x^{8} - 7740 x^{6} + 9473 x^{4} + 368 x^{2} + 256 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(36004060626969600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(660=2^{2}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(131,·)$, $\chi_{660}(199,·)$, $\chi_{660}(329,·)$, $\chi_{660}(331,·)$, $\chi_{660}(461,·)$, $\chi_{660}(529,·)$, $\chi_{660}(659,·)$, $\chi_{660}(89,·)$, $\chi_{660}(221,·)$, $\chi_{660}(419,·)$, $\chi_{660}(551,·)$, $\chi_{660}(109,·)$, $\chi_{660}(241,·)$, $\chi_{660}(439,·)$, $\chi_{660}(571,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{5}$, $\frac{1}{3720} a^{12} - \frac{317}{3720} a^{10} - \frac{151}{1240} a^{8} + \frac{289}{744} a^{6} + \frac{181}{1240} a^{4} - \frac{377}{3720} a^{2} + \frac{98}{465}$, $\frac{1}{3720} a^{13} - \frac{317}{3720} a^{11} - \frac{151}{1240} a^{9} - \frac{83}{744} a^{7} + \frac{181}{1240} a^{5} - \frac{377}{3720} a^{3} - \frac{269}{930} a$, $\frac{1}{13201602960} a^{14} - \frac{73784}{825100185} a^{12} - \frac{64096881}{550066790} a^{10} - \frac{59049737}{6600801480} a^{8} - \frac{9375377}{39290485} a^{6} - \frac{412719781}{1650200370} a^{4} + \frac{49515223}{145072560} a^{2} + \frac{19414524}{275033395}$, $\frac{1}{52806411840} a^{15} + \frac{493091}{4400534320} a^{13} - \frac{947068939}{13201602960} a^{11} + \frac{1633736449}{26403205920} a^{9} - \frac{217701629}{1885943280} a^{7} - \frac{632467243}{2640320592} a^{5} + \frac{30882337}{193430080} a^{3} - \frac{622086317}{1650200370} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{170447}{580290240} a^{15} - \frac{1233107}{145072560} a^{13} + \frac{14273813}{145072560} a^{11} - \frac{172001269}{290145120} a^{9} + \frac{296025349}{145072560} a^{7} - \frac{567868999}{145072560} a^{5} + \frac{3038615671}{580290240} a^{3} - \frac{82680871}{36268140} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 101728.538468 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-55}) \), \(\Q(i, \sqrt{33})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{11})\), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{-3}, \sqrt{11})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{165})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{55})\), \(\Q(\sqrt{-5}, \sqrt{-33})\), \(\Q(\sqrt{5}, \sqrt{-33})\), \(\Q(\sqrt{-15}, \sqrt{-33})\), \(\Q(\sqrt{15}, \sqrt{-33})\), \(\Q(\sqrt{-5}, \sqrt{33})\), \(\Q(\sqrt{5}, \sqrt{33})\), \(\Q(\sqrt{-15}, \sqrt{33})\), \(\Q(\sqrt{15}, \sqrt{33})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{55})\), \(\Q(\sqrt{3}, \sqrt{-55})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-55})\), \(\Q(\sqrt{-3}, \sqrt{55})\), \(\Q(\sqrt{-5}, \sqrt{-11})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{-15})\), \(\Q(\sqrt{-11}, \sqrt{15})\), \(\Q(\sqrt{-5}, \sqrt{11})\), \(\Q(\sqrt{5}, \sqrt{11})\), \(\Q(\sqrt{11}, \sqrt{15})\), \(\Q(\sqrt{11}, \sqrt{-15})\), 8.0.303595776.1, 8.0.189747360000.8, 8.0.189747360000.5, 8.0.12960000.1, 8.0.189747360000.10, 8.0.2342560000.1, 8.0.189747360000.7, 8.0.189747360000.1, 8.0.189747360000.6, 8.0.189747360000.3, 8.0.189747360000.9, 8.0.189747360000.4, 8.8.189747360000.1, 8.0.189747360000.2, 8.0.741200625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$