Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 840 x^{12} - 2492 x^{11} + 6314 x^{10} - 13112 x^{9} + 22557 x^{8} - 31532 x^{7} + 34622 x^{6} - 28952 x^{5} + 19586 x^{4} - 11256 x^{3} + 12652 x^{2} - 9048 x + 14436 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(359634524805529600000000=2^{32}\cdot 5^{8}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(131,·)$, $\chi_{440}(199,·)$, $\chi_{440}(329,·)$, $\chi_{440}(331,·)$, $\chi_{440}(21,·)$, $\chi_{440}(89,·)$, $\chi_{440}(219,·)$, $\chi_{440}(221,·)$, $\chi_{440}(351,·)$, $\chi_{440}(419,·)$, $\chi_{440}(109,·)$, $\chi_{440}(111,·)$, $\chi_{440}(241,·)$, $\chi_{440}(309,·)$, $\chi_{440}(439,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{4}$, $\frac{1}{174} a^{13} + \frac{4}{87} a^{12} - \frac{13}{174} a^{11} - \frac{1}{87} a^{10} - \frac{1}{87} a^{9} + \frac{11}{174} a^{8} - \frac{1}{174} a^{7} + \frac{14}{87} a^{6} - \frac{67}{174} a^{5} - \frac{49}{174} a^{4} - \frac{5}{87} a^{3} + \frac{38}{87} a^{2} + \frac{7}{87} a - \frac{14}{29}$, $\frac{1}{1126359516222} a^{14} - \frac{7}{1126359516222} a^{13} + \frac{286976158}{13097203677} a^{12} + \frac{19823444300}{563179758111} a^{11} - \frac{89042033725}{1126359516222} a^{10} - \frac{37329232703}{563179758111} a^{9} + \frac{1022338463}{26194407354} a^{8} - \frac{21340996231}{563179758111} a^{7} - \frac{149770918322}{563179758111} a^{6} - \frac{546438483223}{1126359516222} a^{5} + \frac{7026165109}{38839983318} a^{4} - \frac{184071327730}{563179758111} a^{3} + \frac{97819543172}{563179758111} a^{2} - \frac{35589885983}{187726586037} a + \frac{16387471885}{62575528679}$, $\frac{1}{368319561804594} a^{15} + \frac{26}{61386593634099} a^{14} + \frac{477813087157}{368319561804594} a^{13} + \frac{51632593544}{20462197878033} a^{12} - \frac{1139777808433}{61386593634099} a^{11} - \frac{7278071654908}{184159780902297} a^{10} + \frac{5592547007042}{184159780902297} a^{9} - \frac{8854774634369}{122773187268198} a^{8} - \frac{2921641307147}{40924395756066} a^{7} - \frac{59360274035242}{184159780902297} a^{6} + \frac{128761185884119}{368319561804594} a^{5} + \frac{4423062740837}{122773187268198} a^{4} - \frac{71030875880027}{184159780902297} a^{3} + \frac{68537199911060}{184159780902297} a^{2} + \frac{3252413799649}{61386593634099} a - \frac{6889951309526}{20462197878033}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{193400867}{2522736724689} a^{15} + \frac{967004335}{1681824483126} a^{14} - \frac{18184151065}{5045473449378} a^{13} + \frac{12366380780}{840912241563} a^{12} - \frac{88525693919}{1681824483126} a^{11} + \frac{12152294297}{82712679498} a^{10} - \frac{864214273445}{2522736724689} a^{9} + \frac{59909316435}{93434693507} a^{8} - \frac{1542949783609}{1681824483126} a^{7} + \frac{2475441894967}{2522736724689} a^{6} - \frac{2584186818433}{5045473449378} a^{5} - \frac{178390017920}{840912241563} a^{4} + \frac{1113001250573}{2522736724689} a^{3} - \frac{571096818284}{2522736724689} a^{2} - \frac{12639110983}{19556098641} a + \frac{96351625001}{280304080521} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136789.59927 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |