Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 7 x^{13} - 3 x^{12} - 98 x^{11} + 129 x^{10} - 156 x^{9} + 259 x^{8} + 1081 x^{7} + 932 x^{6} + 735 x^{5} - 4274 x^{4} - 6735 x^{3} + 225 x^{2} + 3375 x + 50625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35847274805742431640625=5^{12}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{6} + \frac{3}{10} a$, $\frac{1}{70} a^{12} + \frac{1}{35} a^{11} + \frac{3}{70} a^{10} + \frac{1}{35} a^{9} + \frac{9}{35} a^{8} + \frac{3}{10} a^{7} + \frac{3}{35} a^{6} - \frac{31}{70} a^{5} + \frac{8}{35} a^{4} - \frac{13}{35} a^{3} - \frac{1}{70} a^{2} + \frac{2}{7} a - \frac{1}{14}$, $\frac{1}{2886346050} a^{13} + \frac{2120567}{577269210} a^{12} + \frac{10845949}{2886346050} a^{11} - \frac{137145739}{2886346050} a^{10} + \frac{8997769}{481057675} a^{9} + \frac{2975359}{6076518} a^{8} - \frac{359266857}{962115350} a^{7} + \frac{392901759}{962115350} a^{6} - \frac{151598741}{412335150} a^{5} + \frac{717508691}{1443173025} a^{4} - \frac{1364265289}{2886346050} a^{3} + \frac{19894309}{962115350} a^{2} + \frac{29695909}{115453842} a - \frac{6338349}{38484614}$, $\frac{1}{8659038150} a^{14} + \frac{1}{8659038150} a^{13} - \frac{43688081}{8659038150} a^{12} - \frac{2086963}{346361526} a^{11} - \frac{8067113}{288634605} a^{10} + \frac{724357909}{8659038150} a^{9} + \frac{810339893}{2886346050} a^{8} - \frac{70767133}{2886346050} a^{7} + \frac{284922077}{1731807630} a^{6} - \frac{54636242}{865903815} a^{5} + \frac{161547227}{455738850} a^{4} - \frac{1340832659}{2886346050} a^{3} + \frac{75086941}{1237005450} a^{2} + \frac{88043889}{192423070} a - \frac{8019218}{19242307}$, $\frac{1}{129885572250} a^{15} - \frac{1}{64942786125} a^{14} + \frac{2}{64942786125} a^{13} + \frac{344888884}{64942786125} a^{12} + \frac{522123187}{21647595375} a^{11} + \frac{1252199201}{64942786125} a^{10} - \frac{102833788}{3092513625} a^{9} + \frac{4566870874}{21647595375} a^{8} + \frac{8678222342}{64942786125} a^{7} - \frac{11338867147}{64942786125} a^{6} - \frac{137474084}{64942786125} a^{5} - \frac{16453909}{618502725} a^{4} - \frac{21159866362}{64942786125} a^{3} + \frac{224480363}{4329519075} a^{2} + \frac{10259920}{57726921} a + \frac{2581759}{5497802}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{679}{41233515} a^{15} + \frac{1358}{41233515} a^{14} - \frac{4753}{82467030} a^{13} - \frac{679}{27489010} a^{12} + \frac{14669}{41233515} a^{11} + \frac{29197}{27489010} a^{10} - \frac{17654}{13744505} a^{9} + \frac{175861}{82467030} a^{8} + \frac{733999}{82467030} a^{7} - \frac{245447}{8246703} a^{6} + \frac{33271}{5497802} a^{5} - \frac{1451023}{41233515} a^{4} - \frac{304871}{5497802} a^{3} + \frac{10185}{5497802} a^{2} - \frac{14247076}{41233515} a + \frac{2291625}{5497802} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52746.8654076 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |