Normalized defining polynomial
\( x^{16} - 4 x^{15} - x^{14} + 6 x^{13} + 50 x^{12} - 104 x^{11} + 97 x^{10} - 202 x^{9} + 148 x^{8} - 662 x^{7} + 2407 x^{6} - 1898 x^{5} + 349 x^{4} - 633 x^{3} + 1413 x^{2} - 8613 x + 9801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35847274805742431640625=5^{12}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{11} - \frac{4}{15} a^{8} - \frac{4}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{15} a^{4} - \frac{1}{3} a^{3} - \frac{7}{15} a + \frac{2}{5}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} + \frac{1}{15} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{7}{15} a^{6} + \frac{1}{15} a^{5} + \frac{1}{5} a^{4} - \frac{7}{15} a^{2} + \frac{1}{3} a + \frac{1}{5}$, $\frac{1}{225} a^{14} - \frac{1}{225} a^{13} + \frac{1}{45} a^{12} + \frac{4}{75} a^{11} - \frac{19}{225} a^{10} + \frac{22}{225} a^{9} + \frac{67}{225} a^{8} - \frac{28}{225} a^{7} + \frac{67}{225} a^{6} + \frac{37}{225} a^{5} + \frac{46}{225} a^{4} - \frac{2}{225} a^{3} + \frac{82}{225} a^{2} - \frac{7}{15} a + \frac{4}{25}$, $\frac{1}{5595646610705092425} a^{15} - \frac{196600383325087}{223825864428203697} a^{14} + \frac{156083793575536529}{5595646610705092425} a^{13} - \frac{54713305090044346}{1865215536901697475} a^{12} - \frac{918996236754792817}{5595646610705092425} a^{11} + \frac{420210886701997903}{5595646610705092425} a^{10} + \frac{247168335832224739}{5595646610705092425} a^{9} - \frac{2196058554323287141}{5595646610705092425} a^{8} + \frac{1025801698002959839}{5595646610705092425} a^{7} + \frac{462160012686805849}{5595646610705092425} a^{6} - \frac{1024042050800339342}{5595646610705092425} a^{5} - \frac{1660310162004614786}{5595646610705092425} a^{4} - \frac{475454201623466719}{1119129322141018485} a^{3} - \frac{131831994451533466}{1865215536901697475} a^{2} - \frac{260704269429042326}{621738512300565825} a - \frac{8608893617689527}{18840560978805025}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{366790754980531}{621738512300565825} a^{15} + \frac{486048446398028}{621738512300565825} a^{14} + \frac{1886842967269988}{621738512300565825} a^{13} + \frac{2340930729350828}{621738512300565825} a^{12} - \frac{11546177485342402}{621738512300565825} a^{11} + \frac{206819006209075}{24869540492022633} a^{10} - \frac{19569587271637003}{621738512300565825} a^{9} + \frac{365036486912459}{207246170766855275} a^{8} - \frac{1025740466923476}{207246170766855275} a^{7} + \frac{211515478235730112}{621738512300565825} a^{6} - \frac{197305122760544872}{621738512300565825} a^{5} + \frac{6145699782235303}{207246170766855275} a^{4} + \frac{35429103379506139}{621738512300565825} a^{3} - \frac{206869257287137796}{621738512300565825} a^{2} - \frac{714093267047044081}{621738512300565825} a + \frac{45133896118567344}{18840560978805025} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226000.220646 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.1475.1, 4.2.7375.1, 8.4.37866753125.1, 8.0.37866753125.1, 8.0.54390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $59$ | 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.8.6.1 | $x^{8} - 59 x^{4} + 55696$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |