Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} - 11 x^{13} + 114 x^{12} - 15 x^{11} + 62 x^{10} + 193 x^{9} + 828 x^{8} + 298 x^{7} + 952 x^{6} + 1715 x^{5} + 924 x^{4} + 114 x^{3} + 34 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35847274805742431640625=5^{12}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{15} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{15}$, $\frac{1}{75} a^{11} - \frac{2}{75} a^{10} - \frac{2}{25} a^{9} + \frac{4}{75} a^{8} - \frac{26}{75} a^{7} - \frac{11}{75} a^{6} + \frac{3}{25} a^{5} - \frac{31}{75} a^{4} + \frac{19}{75} a^{3} - \frac{2}{25} a^{2} - \frac{17}{75} a + \frac{26}{75}$, $\frac{1}{75} a^{12} + \frac{7}{75} a^{9} - \frac{1}{25} a^{8} - \frac{23}{75} a^{7} + \frac{2}{75} a^{6} + \frac{9}{25} a^{5} + \frac{22}{75} a^{4} - \frac{28}{75} a^{3} + \frac{11}{75} a^{2} - \frac{6}{25} a - \frac{6}{25}$, $\frac{1}{75} a^{13} + \frac{2}{75} a^{10} - \frac{1}{25} a^{9} + \frac{7}{75} a^{8} + \frac{9}{25} a^{7} - \frac{6}{25} a^{6} - \frac{28}{75} a^{5} - \frac{23}{75} a^{4} + \frac{11}{75} a^{3} + \frac{37}{75} a^{2} + \frac{32}{75} a + \frac{7}{15}$, $\frac{1}{55875} a^{14} + \frac{1}{55875} a^{13} + \frac{371}{55875} a^{12} - \frac{14}{55875} a^{11} + \frac{1001}{55875} a^{10} - \frac{1246}{18625} a^{9} - \frac{1851}{18625} a^{8} - \frac{7918}{55875} a^{7} - \frac{26413}{55875} a^{6} + \frac{27637}{55875} a^{5} - \frac{25414}{55875} a^{4} - \frac{4443}{18625} a^{3} + \frac{20411}{55875} a^{2} + \frac{19376}{55875} a - \frac{16639}{55875}$, $\frac{1}{2455926453375} a^{15} + \frac{9858662}{2455926453375} a^{14} - \frac{20461334}{5494242625} a^{13} - \frac{5273693626}{818642151125} a^{12} + \frac{3165131734}{818642151125} a^{11} - \frac{20074926674}{818642151125} a^{10} - \frac{342160317}{818642151125} a^{9} - \frac{94528080931}{2455926453375} a^{8} - \frac{1183849693441}{2455926453375} a^{7} - \frac{386989860212}{818642151125} a^{6} - \frac{587042204012}{2455926453375} a^{5} + \frac{832007882137}{2455926453375} a^{4} + \frac{63242201192}{2455926453375} a^{3} + \frac{31907342912}{2455926453375} a^{2} - \frac{165052393496}{818642151125} a - \frac{969769593539}{2455926453375}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11967.7452041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-295}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{5}, \sqrt{-59})\), 4.2.1475.1 x2, 4.0.17405.1 x2, 8.0.7573350625.1, 8.2.3209046875.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |