Normalized defining polynomial
\( x^{16} + 5 x^{14} + 17 x^{12} + 34 x^{10} + 60 x^{8} + 19 x^{6} + 68 x^{4} - 32 x^{2} + 64 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35811866884497303616=2^{6}\cdot 97^{2}\cdot 2777^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{3}{10} a^{2} + \frac{1}{5}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{5} - \frac{3}{10} a^{3} - \frac{3}{10} a$, $\frac{1}{20} a^{10} + \frac{1}{20} a^{6} - \frac{1}{2} a^{5} - \frac{3}{20} a^{4} - \frac{1}{2} a^{3} - \frac{3}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{11} + \frac{1}{20} a^{7} + \frac{7}{20} a^{5} - \frac{3}{20} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{8} - \frac{3}{20} a^{6} - \frac{1}{4} a^{4} - \frac{1}{5} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{80} a^{13} - \frac{1}{40} a^{12} + \frac{1}{80} a^{11} - \frac{1}{40} a^{10} - \frac{3}{80} a^{9} - \frac{1}{40} a^{8} - \frac{1}{40} a^{7} + \frac{1}{20} a^{6} + \frac{1}{4} a^{5} + \frac{2}{5} a^{4} + \frac{19}{80} a^{3} - \frac{7}{40} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{3680} a^{14} - \frac{91}{3680} a^{12} - \frac{79}{3680} a^{10} - \frac{1}{20} a^{9} - \frac{11}{368} a^{8} - \frac{21}{184} a^{6} + \frac{9}{20} a^{5} + \frac{227}{3680} a^{4} - \frac{7}{20} a^{3} + \frac{457}{920} a^{2} + \frac{3}{20} a + \frac{93}{230}$, $\frac{1}{7360} a^{15} + \frac{1}{7360} a^{13} + \frac{13}{7360} a^{11} + \frac{35}{736} a^{9} - \frac{151}{1840} a^{7} + \frac{2803}{7360} a^{5} - \frac{59}{920} a^{3} - \frac{91}{460} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1192.8395084 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 105 conjugacy class representatives for t16n1664 are not computed |
| Character table for t16n1664 is not computed |
Intermediate fields
| 4.4.2777.1, 8.0.5984301704.1, 8.4.61693832.1, 8.4.748037713.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2777 | Data not computed | ||||||