Normalized defining polynomial
\( x^{16} + 4 x^{14} - x^{13} + 15 x^{12} + 12 x^{11} + 57 x^{10} + 34 x^{9} + 201 x^{8} + 67 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(3580992031933837890625\)
\(\medspace = 5^{12}\cdot 19^{4}\cdot 103^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.24\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}19^{1/2}103^{1/2}\approx 147.91864371956444$ | ||
Ramified primes: |
\(5\), \(19\), \(103\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}$, $\frac{1}{42142}a^{13}+\frac{25}{21071}a^{12}+\frac{3892}{21071}a^{11}+\frac{199}{42142}a^{10}+\frac{5007}{21071}a^{9}+\frac{18579}{42142}a^{8}-\frac{7275}{21071}a^{7}+\frac{5816}{21071}a^{6}-\frac{2509}{42142}a^{5}-\frac{10357}{21071}a^{4}+\frac{2143}{42142}a^{3}+\frac{6432}{21071}a^{2}-\frac{758}{21071}a-\frac{14257}{42142}$, $\frac{1}{42142}a^{14}+\frac{2642}{21071}a^{12}-\frac{9723}{42142}a^{11}+\frac{32}{21071}a^{10}-\frac{18559}{42142}a^{9}-\frac{8188}{21071}a^{8}-\frac{9712}{21071}a^{7}+\frac{5879}{42142}a^{6}+\frac{10226}{21071}a^{5}-\frac{15707}{42142}a^{4}-\frac{5001}{21071}a^{3}-\frac{6293}{21071}a^{2}+\frac{19401}{42142}a-\frac{1782}{21071}$, $\frac{1}{42142}a^{15}+\frac{2273}{21071}a^{10}-\frac{5905}{21071}a^{5}+\frac{5163}{42142}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{5}$, which has order $5$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{3324}{21071} a^{15} - \frac{831}{21071} a^{14} + \frac{12465}{21071} a^{13} - \frac{13161}{42142} a^{12} + \frac{2493}{1109} a^{11} + \frac{28254}{21071} a^{10} + \frac{167031}{21071} a^{9} + \frac{55677}{21071} a^{8} + \frac{1187657}{42142} a^{7} + \frac{27423}{21071} a^{6} + \frac{23268}{21071} a^{5} - \frac{7479}{21071} a^{4} + \frac{4155}{21071} a^{3} - \frac{259523}{42142} a^{2} + \frac{831}{21071} a \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{7407}{42142}a^{15}+\frac{7407}{42142}a^{14}+\frac{29749}{42142}a^{13}+\frac{22221}{42142}a^{12}+\frac{51849}{21071}a^{11}+\frac{199989}{42142}a^{10}+\frac{511083}{42142}a^{9}+\frac{676257}{42142}a^{8}+\frac{1740645}{42142}a^{7}+\frac{992538}{21071}a^{6}+\frac{1044387}{42142}a^{5}+\frac{792549}{42142}a^{4}+\frac{371361}{42142}a^{3}+\frac{7407}{2218}a^{2}-\frac{14814}{21071}a-\frac{6257}{21071}$, $a$, $\frac{5084}{21071}a^{14}-\frac{1271}{21071}a^{13}+\frac{19065}{21071}a^{12}-\frac{10331}{21071}a^{11}+\frac{3813}{1109}a^{10}+\frac{43214}{21071}a^{9}+\frac{255471}{21071}a^{8}+\frac{85157}{21071}a^{7}+\frac{902710}{21071}a^{6}+\frac{41943}{21071}a^{5}+\frac{35588}{21071}a^{4}-\frac{11439}{21071}a^{3}+\frac{6355}{21071}a^{2}-\frac{31434}{21071}a+\frac{1271}{21071}$, $\frac{242}{21071}a^{14}-\frac{121}{42142}a^{13}+\frac{1815}{42142}a^{12}-\frac{384}{21071}a^{11}+\frac{363}{2218}a^{10}+\frac{2057}{21071}a^{9}+\frac{24321}{42142}a^{8}+\frac{8107}{42142}a^{7}+\frac{44710}{21071}a^{6}+\frac{3993}{42142}a^{5}+\frac{1694}{21071}a^{4}-\frac{1089}{42142}a^{3}+\frac{605}{42142}a^{2}-\frac{59570}{21071}a+\frac{121}{42142}$, $\frac{14055}{42142}a^{15}-\frac{7705}{42142}a^{14}+\frac{56099}{42142}a^{13}-\frac{43683}{42142}a^{12}+\frac{109116}{21071}a^{11}+\frac{57555}{42142}a^{10}+\frac{706087}{42142}a^{9}+\frac{53451}{42142}a^{8}+\frac{2573217}{42142}a^{7}-\frac{273561}{21071}a^{6}+\frac{543801}{42142}a^{5}+\frac{105859}{42142}a^{4}+\frac{229575}{42142}a^{3}-\frac{333891}{42142}a^{2}+\frac{68469}{21071}a-\frac{4474}{21071}$, $\frac{20219}{42142}a^{15}-\frac{980}{21071}a^{14}+\frac{79335}{42142}a^{13}-\frac{696}{1109}a^{12}+\frac{149331}{21071}a^{11}+\frac{110527}{21071}a^{10}+\frac{551246}{21071}a^{9}+\frac{581117}{42142}a^{8}+\frac{1961646}{21071}a^{7}+\frac{496269}{21071}a^{6}+\frac{541609}{21071}a^{5}+\frac{360287}{21071}a^{4}+\frac{401245}{42142}a^{3}-\frac{112368}{21071}a^{2}+\frac{56979}{21071}a-\frac{14055}{42142}$, $\frac{15177}{42142}a^{15}+\frac{5745}{42142}a^{14}+\frac{54679}{42142}a^{13}+\frac{4530}{21071}a^{12}+\frac{99216}{21071}a^{11}+\frac{139499}{21071}a^{10}+\frac{845145}{42142}a^{9}+\frac{787611}{42142}a^{8}+\frac{1464151}{21071}a^{7}+\frac{1019961}{21071}a^{6}+\frac{188674}{21071}a^{5}+\frac{777591}{42142}a^{4}+\frac{379671}{42142}a^{3}-\frac{59395}{21071}a^{2}-\frac{13983}{21071}a+\frac{70131}{42142}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 10491.0986114 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 10491.0986114 \cdot 5}{10\cdot\sqrt{3580992031933837890625}}\cr\approx \mathstrut & 0.212925778153 \end{aligned}\]
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.1957.1, 8.8.2393655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.0.28647936255470703125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(19\)
| 19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(103\)
| 103.4.0.1 | $x^{4} + 2 x^{2} + 88 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
103.4.0.1 | $x^{4} + 2 x^{2} + 88 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
103.8.4.1 | $x^{8} + 416 x^{6} + 176 x^{5} + 64080 x^{4} - 35904 x^{3} + 4330880 x^{2} - 5564416 x + 109124096$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |