Normalized defining polynomial
\( x^{16} - 3 x^{15} - 70 x^{14} + 295 x^{13} + 2035 x^{12} - 10254 x^{11} - 26098 x^{10} + 175355 x^{9} + 61525 x^{8} - 1401095 x^{7} + 2189112 x^{6} + 1958559 x^{5} - 23390105 x^{4} + 34785530 x^{3} + 45222615 x^{2} - 124179562 x + 309425941 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356877016993229400634765625=5^{15}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{514552587477350281165161774326407486667599771207238865869} a^{15} - \frac{128729456600645302200352631774329223227898480664356264660}{514552587477350281165161774326407486667599771207238865869} a^{14} + \frac{133041353582439889544180057695094236850446408877715182784}{514552587477350281165161774326407486667599771207238865869} a^{13} - \frac{7015378904312154221660484533812319933322311365784438659}{16598470563785492940811670139561531827987089393781898899} a^{12} + \frac{209207090547462299145993398165844305435152288504320166361}{514552587477350281165161774326407486667599771207238865869} a^{11} - \frac{121302641513881642702409173198416874660058925487637953473}{514552587477350281165161774326407486667599771207238865869} a^{10} - \frac{180629150243875572017868991446575770382821780658331553714}{514552587477350281165161774326407486667599771207238865869} a^{9} - \frac{194320101335317734291913440050945994761768079517108441859}{514552587477350281165161774326407486667599771207238865869} a^{8} - \frac{191853455142806795046972258570934282299135613783714867427}{514552587477350281165161774326407486667599771207238865869} a^{7} + \frac{60263699211552639175636402676194945406795140645545069570}{514552587477350281165161774326407486667599771207238865869} a^{6} - \frac{116691815397149426262247051635525718537214317037856145983}{514552587477350281165161774326407486667599771207238865869} a^{5} + \frac{114420913630032173756246181936892794361204419311352784529}{514552587477350281165161774326407486667599771207238865869} a^{4} + \frac{125652376481431000757522680623891907016914003776289125739}{514552587477350281165161774326407486667599771207238865869} a^{3} + \frac{92557178113924344849280711846751159981548992152449769943}{514552587477350281165161774326407486667599771207238865869} a^{2} + \frac{165224546891392386278365960025602125409884920903921182907}{514552587477350281165161774326407486667599771207238865869} a + \frac{192692699095854861880270001702740195104169577784705124838}{514552587477350281165161774326407486667599771207238865869}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5570593416481222535772709822452666324841614}{77108582436137957831709739058916997635368642688559} a^{15} - \frac{35767223282545253031524389286921761290556110}{77108582436137957831709739058916997635368642688559} a^{14} - \frac{272194046849594386500326869889629708230945101}{77108582436137957831709739058916997635368642688559} a^{13} + \frac{2561870639460510334995556425489019639221048384}{77108582436137957831709739058916997635368642688559} a^{12} + \frac{2840309309466882324872350266152626706723728802}{77108582436137957831709739058916997635368642688559} a^{11} - \frac{65860450726461054254646218738526845290941640731}{77108582436137957831709739058916997635368642688559} a^{10} + \frac{69492693973193911003399882262209167134671849502}{77108582436137957831709739058916997635368642688559} a^{9} + \frac{699770980093046561728259893195545541864349175626}{77108582436137957831709739058916997635368642688559} a^{8} - \frac{1807622011254908174764355139214451724508727413968}{77108582436137957831709739058916997635368642688559} a^{7} - \frac{1003214282031823107845551973842324146955045108783}{77108582436137957831709739058916997635368642688559} a^{6} + \frac{12201037683161773271587762242904192365132554340964}{77108582436137957831709739058916997635368642688559} a^{5} - \frac{34260027361796845897745131622936229816525327327990}{77108582436137957831709739058916997635368642688559} a^{4} + \frac{7232917310785238557046362801524106423475200041029}{77108582436137957831709739058916997635368642688559} a^{3} + \frac{141558276786549678460091703422232210458664561580552}{77108582436137957831709739058916997635368642688559} a^{2} - \frac{253423563135700102339111214851828652722764189787367}{77108582436137957831709739058916997635368642688559} a + \frac{491361336996994928280438881402739880233169080018336}{77108582436137957831709739058916997635368642688559} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2862996.09182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||