Normalized defining polynomial
\( x^{16} - 3 x^{15} + 5 x^{14} - 10 x^{13} - 85 x^{12} - 174 x^{11} + 1477 x^{10} - 1875 x^{9} + 1735 x^{8} + 40415 x^{7} - 135868 x^{6} - 21421 x^{5} + 354385 x^{4} - 1719225 x^{3} + 3440025 x^{2} + 3484458 x + 797131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356877016993229400634765625=5^{15}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{2}{11} a^{12} - \frac{5}{11} a^{11} - \frac{2}{11} a^{10} - \frac{3}{11} a^{9} + \frac{3}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{4}{11} a^{5} - \frac{5}{11} a^{4} + \frac{3}{11} a^{3} - \frac{5}{11} a^{2} - \frac{1}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{14} + \frac{2}{11} a^{12} - \frac{3}{11} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} + \frac{3}{11} a^{8} - \frac{4}{11} a^{7} + \frac{1}{11} a^{6} + \frac{3}{11} a^{5} + \frac{2}{11} a^{4} - \frac{2}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{27682702351368472902705412170244094718843439} a^{15} + \frac{506005726617212646594873402587567263783718}{27682702351368472902705412170244094718843439} a^{14} - \frac{638416433512917419596859025806344080345153}{27682702351368472902705412170244094718843439} a^{13} + \frac{6891708097791843953626292019650682651396397}{27682702351368472902705412170244094718843439} a^{12} + \frac{1077286550996628510703940626391115443361768}{2516609304669861172973219288204008610803949} a^{11} - \frac{4079482909806895226102188518687218871755650}{27682702351368472902705412170244094718843439} a^{10} - \frac{13034342456818351358346451711791201141958208}{27682702351368472902705412170244094718843439} a^{9} + \frac{13682601945091064611716477082889519414521691}{27682702351368472902705412170244094718843439} a^{8} + \frac{466936835182360597126792272855304237461108}{27682702351368472902705412170244094718843439} a^{7} + \frac{370717203174259910607324148266146045973015}{27682702351368472902705412170244094718843439} a^{6} - \frac{102515316182921098256197766929614932990970}{389897216216457364826836791130198517166809} a^{5} + \frac{5626189096455876671694004082070175254607244}{27682702351368472902705412170244094718843439} a^{4} - \frac{132484138939187182709957424350266343872312}{27682702351368472902705412170244094718843439} a^{3} - \frac{386930323098138855173196788940322623198291}{27682702351368472902705412170244094718843439} a^{2} - \frac{4678870053046875495343071499850836323989850}{27682702351368472902705412170244094718843439} a + \frac{12972023397719147405771947699017392442848038}{27682702351368472902705412170244094718843439}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8922477733582279028952659918641985}{4933648610117353930262949950141524633549} a^{15} - \frac{23303232790879382305109117009823517}{4933648610117353930262949950141524633549} a^{14} + \frac{25467065567951748414313761235865154}{4933648610117353930262949950141524633549} a^{13} - \frac{102128134059627238551611294794838442}{4933648610117353930262949950141524633549} a^{12} - \frac{55816939283141068298938560802369003}{448513510010668539114813631831047693959} a^{11} - \frac{1628189500056423403802001768509111244}{4933648610117353930262949950141524633549} a^{10} + \frac{12512741811973334493783175706757459769}{4933648610117353930262949950141524633549} a^{9} - \frac{6626409110442435546330578844902202399}{4933648610117353930262949950141524633549} a^{8} + \frac{7333861731425255598695258394572976519}{4933648610117353930262949950141524633549} a^{7} + \frac{264711930437203947424420293467215995567}{4933648610117353930262949950141524633549} a^{6} - \frac{14710027004488291353897410928194632740}{69488008593202168031872534509035558219} a^{5} - \frac{247596256471180190927377355285049215553}{4933648610117353930262949950141524633549} a^{4} + \frac{2000917068001204598530506025686816685389}{4933648610117353930262949950141524633549} a^{3} - \frac{10420563123701643223109820944145780248190}{4933648610117353930262949950141524633549} a^{2} + \frac{33170924361721261807962398964472808448103}{4933648610117353930262949950141524633549} a + \frac{12828765820995170164857377162572528909123}{4933648610117353930262949950141524633549} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1835018.24291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |