Normalized defining polynomial
\( x^{16} - 3 x^{15} - 105 x^{13} + 905 x^{12} - 3709 x^{11} + 13942 x^{10} - 59860 x^{9} + 225995 x^{8} - 653290 x^{7} + 1451972 x^{6} - 2539361 x^{5} + 3485545 x^{4} - 3615625 x^{3} + 2634030 x^{2} - 1186107 x + 246011 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356877016993229400634765625=5^{15}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{54048434947749486163134855839438} a^{15} + \frac{558422846146269536973293068859}{27024217473874743081567427919719} a^{14} + \frac{5070224442009969883960011180602}{27024217473874743081567427919719} a^{13} - \frac{4607676561374275814596863842605}{54048434947749486163134855839438} a^{12} + \frac{26029800520783060363627470047869}{54048434947749486163134855839438} a^{11} + \frac{1378274675776845695521580596985}{27024217473874743081567427919719} a^{10} + \frac{4349306740815768701412579890613}{54048434947749486163134855839438} a^{9} + \frac{9534383174187476794433425724855}{27024217473874743081567427919719} a^{8} + \frac{1478817544424279741197806829943}{54048434947749486163134855839438} a^{7} + \frac{10458549315972465744193500106980}{27024217473874743081567427919719} a^{6} - \frac{21290374569695548227409607832547}{54048434947749486163134855839438} a^{5} + \frac{16397638826816893152751011393135}{54048434947749486163134855839438} a^{4} + \frac{3562483439873006994772632379138}{27024217473874743081567427919719} a^{3} - \frac{9306971110429412571933691446729}{27024217473874743081567427919719} a^{2} + \frac{24415024216633835391642262870043}{54048434947749486163134855839438} a + \frac{11739607823160373155734220413912}{27024217473874743081567427919719}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{122485541347720989418419806805}{27024217473874743081567427919719} a^{15} - \frac{285450128632873337373826377134}{27024217473874743081567427919719} a^{14} - \frac{280032530844391181112456922676}{27024217473874743081567427919719} a^{13} - \frac{13057582614754001084186232989458}{27024217473874743081567427919719} a^{12} + \frac{102284944623171376594814934011354}{27024217473874743081567427919719} a^{11} - \frac{375915516840968214386625889059788}{27024217473874743081567427919719} a^{10} + \frac{1405831049303540777682875810120678}{27024217473874743081567427919719} a^{9} - \frac{6239597768865351508851665092922426}{27024217473874743081567427919719} a^{8} + \frac{22850027960812255337263182870659262}{27024217473874743081567427919719} a^{7} - \frac{61778065809929853775006566299773026}{27024217473874743081567427919719} a^{6} + \frac{127038381706351063866324785529189509}{27024217473874743081567427919719} a^{5} - \frac{204056073428238999457880194688819485}{27024217473874743081567427919719} a^{4} + \frac{251286356862232001072324492813804516}{27024217473874743081567427919719} a^{3} - \frac{221165270874462485775574536270377342}{27024217473874743081567427919719} a^{2} + \frac{121808351511246140513849670933471858}{27024217473874743081567427919719} a - \frac{31088876645772954012288249121686236}{27024217473874743081567427919719} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2032499.09239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||