Normalized defining polynomial
\( x^{16} - 3 x^{15} - 45 x^{14} + 25 x^{13} + 1000 x^{12} + 1351 x^{11} - 8458 x^{10} - 19960 x^{9} + 44600 x^{8} + 254330 x^{7} + 523387 x^{6} + 693794 x^{5} + 667520 x^{4} + 483375 x^{3} + 313920 x^{2} + 196993 x + 75581 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356877016993229400634765625=5^{15}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{13} + \frac{3}{22} a^{12} - \frac{5}{22} a^{11} + \frac{7}{22} a^{10} - \frac{1}{2} a^{9} - \frac{7}{22} a^{8} - \frac{1}{22} a^{7} + \frac{5}{11} a^{6} - \frac{7}{22} a^{5} + \frac{3}{11} a^{3} + \frac{9}{22} a^{2} + \frac{3}{11} a - \frac{1}{2}$, $\frac{1}{22} a^{14} - \frac{3}{22} a^{12} + \frac{1}{22} a^{10} + \frac{2}{11} a^{9} + \frac{9}{22} a^{8} - \frac{9}{22} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5} + \frac{3}{11} a^{4} - \frac{9}{22} a^{3} + \frac{1}{22} a^{2} + \frac{2}{11} a$, $\frac{1}{7682415162365946413162294621490947916722} a^{15} + \frac{33210237121712348601242804174293052503}{7682415162365946413162294621490947916722} a^{14} + \frac{2021255760628970913445958586686288955}{3841207581182973206581147310745473958361} a^{13} + \frac{935983220262667919951900843380000117587}{7682415162365946413162294621490947916722} a^{12} - \frac{450325525910681628488374506314068061794}{3841207581182973206581147310745473958361} a^{11} - \frac{3257407628499225099465843038992763467821}{7682415162365946413162294621490947916722} a^{10} + \frac{150031195487338084510938223377819489887}{3841207581182973206581147310745473958361} a^{9} - \frac{323106079346230415465523286676457362829}{3841207581182973206581147310745473958361} a^{8} - \frac{650722750826363192982549149630126859168}{3841207581182973206581147310745473958361} a^{7} - \frac{234469120003315351602051464087620207569}{698401378396904219378390420135540719702} a^{6} + \frac{775653349846536641429429382780916045555}{3841207581182973206581147310745473958361} a^{5} + \frac{1071378292674810310352842476482828778281}{7682415162365946413162294621490947916722} a^{4} + \frac{1602994419674487188809038494753770371948}{3841207581182973206581147310745473958361} a^{3} - \frac{52548675037380872134325711372073085927}{3841207581182973206581147310745473958361} a^{2} + \frac{1939319940972449632395088169266040324997}{7682415162365946413162294621490947916722} a + \frac{11744589868078893281472413453240427590}{349200689198452109689195210067770359851}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{164537732264905444470041859684380217}{349200689198452109689195210067770359851} a^{15} - \frac{775679361216820881967235704055199700}{349200689198452109689195210067770359851} a^{14} - \frac{6074770761294144073384346126225084865}{349200689198452109689195210067770359851} a^{13} + \frac{14532106107629909801259089564640437904}{349200689198452109689195210067770359851} a^{12} + \frac{139608213212203639819441136810734258791}{349200689198452109689195210067770359851} a^{11} - \frac{17112254114136112399760092872018222150}{349200689198452109689195210067770359851} a^{10} - \frac{123803401255367419932547540847099800562}{31745517199859282699017746369797305441} a^{9} - \frac{948456952763154115125898401138500672747}{349200689198452109689195210067770359851} a^{8} + \frac{8955695839691240583770584286754349220394}{349200689198452109689195210067770359851} a^{7} + \frac{26480487690578119427489524038144462015991}{349200689198452109689195210067770359851} a^{6} + \frac{40802110385185570864262154094515229876522}{349200689198452109689195210067770359851} a^{5} + \frac{44313506312406516288765923902194590767199}{349200689198452109689195210067770359851} a^{4} + \frac{33461548204248077957078371296007891936255}{349200689198452109689195210067770359851} a^{3} + \frac{21343514476327152174388463374311579882004}{349200689198452109689195210067770359851} a^{2} + \frac{14460821392294389235347412354149801984879}{349200689198452109689195210067770359851} a + \frac{669583100484634309354433613403552947772}{31745517199859282699017746369797305441} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3211466.17743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||