Normalized defining polynomial
\( x^{16} - 3 x^{15} - 45 x^{14} + 205 x^{13} + 485 x^{12} - 4234 x^{11} + 3952 x^{10} + 27060 x^{9} - 81165 x^{8} + 23670 x^{7} + 309122 x^{6} - 819991 x^{5} + 1147520 x^{4} - 1067545 x^{3} + 704900 x^{2} - 317102 x + 75581 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356877016993229400634765625=5^{15}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1350448249928246629516842003143618} a^{15} - \frac{63591320723241051791520914583463}{1350448249928246629516842003143618} a^{14} - \frac{113192010324192382923925089123533}{1350448249928246629516842003143618} a^{13} - \frac{16175841617989758640393353362045}{675224124964123314758421001571809} a^{12} - \frac{254770855839043482925513742263986}{675224124964123314758421001571809} a^{11} + \frac{102930895329641142621692519350469}{675224124964123314758421001571809} a^{10} + \frac{251947051390684601165947681597379}{675224124964123314758421001571809} a^{9} + \frac{117498730530709730537541603401494}{675224124964123314758421001571809} a^{8} - \frac{422655056298370107851462398812761}{1350448249928246629516842003143618} a^{7} - \frac{140293174667551708286520626887558}{675224124964123314758421001571809} a^{6} + \frac{183880039832254615548341982611549}{675224124964123314758421001571809} a^{5} - \frac{239698565301028209947272186895805}{675224124964123314758421001571809} a^{4} + \frac{318392234075930529776230402432777}{675224124964123314758421001571809} a^{3} + \frac{272435348816172445293328114187541}{675224124964123314758421001571809} a^{2} + \frac{368168316893196528014360847342907}{1350448249928246629516842003143618} a - \frac{220072481675033585404410398092073}{675224124964123314758421001571809}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10292306656452088317028331703}{675224124964123314758421001571809} a^{15} + \frac{91460796055445523077885334761}{675224124964123314758421001571809} a^{14} - \frac{532113080401908416303797888399}{675224124964123314758421001571809} a^{13} - \frac{3609816020886711508633656140694}{675224124964123314758421001571809} a^{12} + \frac{16195922061069743494156237653028}{675224124964123314758421001571809} a^{11} + \frac{45058360738799750890103411003329}{675224124964123314758421001571809} a^{10} - \frac{267824652356020230713526531455129}{675224124964123314758421001571809} a^{9} - \frac{14607230631577281399737167919136}{675224124964123314758421001571809} a^{8} + \frac{1919815716019992549392540355415987}{675224124964123314758421001571809} a^{7} - \frac{3038632058580416582660393375408032}{675224124964123314758421001571809} a^{6} - \frac{3195676136371535028799930168833798}{675224124964123314758421001571809} a^{5} + \frac{16590641528661228723680838916625002}{675224124964123314758421001571809} a^{4} - \frac{25723163140533543749130923482224794}{675224124964123314758421001571809} a^{3} + \frac{23751275087679619224679287503500166}{675224124964123314758421001571809} a^{2} - \frac{15202805160587009997390772804243493}{675224124964123314758421001571809} a + \frac{6172814585800023473376244299745257}{675224124964123314758421001571809} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1650674.25582 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |