Normalized defining polynomial
\( x^{16} - 8 x^{15} + 48 x^{14} - 88 x^{13} + 240 x^{12} + 1968 x^{11} - 5588 x^{10} + 16184 x^{9} + 11832 x^{8} - 83624 x^{7} + 415672 x^{6} - 951840 x^{5} + 2031636 x^{4} - 2871392 x^{3} + 3696324 x^{2} - 3324304 x + 1977337 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(354308725098774913512640610304=2^{52}\cdot 3^{12}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{739188145} a^{14} - \frac{12671869}{739188145} a^{13} + \frac{3156258}{739188145} a^{12} + \frac{270875881}{739188145} a^{11} - \frac{81187}{739188145} a^{10} - \frac{213935252}{739188145} a^{9} - \frac{5011862}{32138615} a^{8} + \frac{185758872}{739188145} a^{7} - \frac{26539567}{739188145} a^{6} + \frac{239961243}{739188145} a^{5} - \frac{221171018}{739188145} a^{4} + \frac{40682921}{147837629} a^{3} - \frac{21588376}{739188145} a^{2} + \frac{325349236}{739188145} a - \frac{43996199}{739188145}$, $\frac{1}{775764369396858502159633338700158265895} a^{15} - \frac{520248504071538208519636203137}{775764369396858502159633338700158265895} a^{14} - \frac{60006576610316216690538304021521336986}{775764369396858502159633338700158265895} a^{13} - \frac{41800885098429434666362514340460862589}{775764369396858502159633338700158265895} a^{12} - \frac{59991070502015491707864286702383136782}{775764369396858502159633338700158265895} a^{11} - \frac{320872181593108315373255095867832957178}{775764369396858502159633338700158265895} a^{10} + \frac{374023991727874395701539169008972099491}{775764369396858502159633338700158265895} a^{9} - \frac{368733568171669207192392512103934650989}{775764369396858502159633338700158265895} a^{8} + \frac{170607554999552659200479994027506120439}{775764369396858502159633338700158265895} a^{7} + \frac{57839725455026751399199147947280383514}{775764369396858502159633338700158265895} a^{6} - \frac{224747826425204394979391416129416342231}{775764369396858502159633338700158265895} a^{5} - \frac{358417186344575934907355470073238676922}{775764369396858502159633338700158265895} a^{4} - \frac{358037385414601171596357742444688000903}{775764369396858502159633338700158265895} a^{3} - \frac{69339034867207308882066895037907919653}{155152873879371700431926667740031653179} a^{2} - \frac{138838301769853098370443514833225821746}{775764369396858502159633338700158265895} a - \frac{59313351518146970830772995755270403960}{155152873879371700431926667740031653179}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{16}$, which has order $512$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 431260.406848 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4.D_4$ |
| Character table for $C_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.423936.1, 4.4.423936.2, 8.8.718886928384.3, 8.0.404373897216.34, 8.0.6469982355456.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |