Normalized defining polynomial
\( x^{16} + 240 x^{14} + 23400 x^{12} + 1188000 x^{10} + 33412500 x^{8} + 510300000 x^{6} + 3827250000 x^{4} + 10935000000 x^{2} + 25558736641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3536375739919375385601751537156096=2^{64}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1952=2^{5}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1952}(1,·)$, $\chi_{1952}(1219,·)$, $\chi_{1952}(1221,·)$, $\chi_{1952}(975,·)$, $\chi_{1952}(977,·)$, $\chi_{1952}(731,·)$, $\chi_{1952}(733,·)$, $\chi_{1952}(1951,·)$, $\chi_{1952}(487,·)$, $\chi_{1952}(489,·)$, $\chi_{1952}(1707,·)$, $\chi_{1952}(1709,·)$, $\chi_{1952}(243,·)$, $\chi_{1952}(245,·)$, $\chi_{1952}(1463,·)$, $\chi_{1952}(1465,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15841} a^{8} + \frac{120}{15841} a^{6} + \frac{4500}{15841} a^{4} + \frac{6477}{15841} a^{2} + \frac{6204}{15841}$, $\frac{1}{2532516511} a^{9} + \frac{660427251}{2532516511} a^{7} + \frac{966907458}{2532516511} a^{5} + \frac{1149461119}{2532516511} a^{3} - \frac{243153146}{2532516511} a$, $\frac{1}{2532516511} a^{10} + \frac{150}{2532516511} a^{8} + \frac{223667179}{2532516511} a^{6} - \frac{18660854}{361788073} a^{4} - \frac{409099244}{2532516511} a^{2} + \frac{2014}{15841}$, $\frac{1}{2532516511} a^{11} - \frac{72276542}{2532516511} a^{7} - \frac{813303551}{2532516511} a^{5} - \frac{88163478}{361788073} a^{3} - \frac{1192795571}{2532516511} a$, $\frac{1}{2532516511} a^{12} - \frac{14850}{2532516511} a^{8} + \frac{260549956}{2532516511} a^{6} + \frac{398356246}{2532516511} a^{4} + \frac{863145489}{2532516511} a^{2} + \frac{351}{15841}$, $\frac{1}{2532516511} a^{13} - \frac{831219797}{2532516511} a^{7} - \frac{394509824}{2532516511} a^{5} + \frac{1199478499}{2532516511} a^{3} + \frac{600441307}{2532516511} a$, $\frac{1}{2532516511} a^{14} - \frac{1628}{81694081} a^{8} + \frac{577665727}{2532516511} a^{6} + \frac{30147492}{81694081} a^{4} - \frac{629002}{34692007} a^{2} + \frac{2320}{15841}$, $\frac{1}{2532516511} a^{15} + \frac{81481132}{361788073} a^{7} - \frac{1108239}{11670583} a^{5} + \frac{1134635580}{2532516511} a^{3} - \frac{1039575813}{2532516511} a$
Class group and class number
$C_{15}\times C_{15}\times C_{6630}$, which has order $1491750$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-122}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-61}) \), \(\Q(\sqrt{2}, \sqrt{-61})\), \(\Q(\zeta_{16})^+\), 4.0.7620608.2, 8.0.232294665158656.11, \(\Q(\zeta_{32})^+\), 8.0.29733717140307968.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 61 | Data not computed | ||||||