Normalized defining polynomial
\( x^{16} - 7 x^{15} + 26 x^{14} - 64 x^{13} + 112 x^{12} - 125 x^{11} + 116 x^{10} - 221 x^{9} + 724 x^{8} - 1662 x^{7} + 2781 x^{6} - 3018 x^{5} + 3021 x^{4} - 1494 x^{3} + 1260 x^{2} + 90 x + 99 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525688174246906640625=3^{12}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4389} a^{12} - \frac{2125}{4389} a^{11} - \frac{1699}{4389} a^{10} - \frac{1186}{4389} a^{9} - \frac{92}{4389} a^{8} + \frac{571}{4389} a^{7} - \frac{769}{4389} a^{6} + \frac{1675}{4389} a^{5} - \frac{281}{627} a^{4} + \frac{358}{1463} a^{3} + \frac{383}{1463} a^{2} - \frac{641}{1463} a + \frac{50}{133}$, $\frac{1}{4389} a^{13} - \frac{149}{627} a^{11} + \frac{586}{4389} a^{10} - \frac{32}{133} a^{9} - \frac{259}{627} a^{8} + \frac{414}{1463} a^{7} + \frac{86}{1463} a^{6} - \frac{109}{231} a^{5} - \frac{43}{399} a^{4} + \frac{373}{1463} a^{3} - \frac{194}{1463} a^{2} + \frac{478}{1463} a - \frac{17}{133}$, $\frac{1}{917301} a^{14} + \frac{17}{917301} a^{13} + \frac{3}{43681} a^{12} + \frac{50944}{917301} a^{11} + \frac{37880}{305767} a^{10} + \frac{47741}{305767} a^{9} + \frac{134709}{305767} a^{8} + \frac{187664}{917301} a^{7} + \frac{1828}{27797} a^{6} + \frac{31106}{83391} a^{5} + \frac{433420}{917301} a^{4} + \frac{110958}{305767} a^{3} - \frac{41530}{305767} a^{2} - \frac{14860}{305767} a - \frac{5105}{27797}$, $\frac{1}{2327192637} a^{15} + \frac{92}{2327192637} a^{14} - \frac{23171}{775730879} a^{13} + \frac{264878}{2327192637} a^{12} + \frac{24515399}{54120759} a^{11} + \frac{2929118}{17497689} a^{10} - \frac{69947689}{332456091} a^{9} + \frac{70111667}{775730879} a^{8} - \frac{353429414}{2327192637} a^{7} - \frac{383385}{915857} a^{6} + \frac{5883586}{39443943} a^{5} + \frac{187789675}{2327192637} a^{4} - \frac{318120623}{775730879} a^{3} - \frac{6232916}{70520989} a^{2} + \frac{238447009}{775730879} a - \frac{23492005}{70520989}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6810.46306433 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T35):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-95}) \), 4.0.16245.1 x2, 4.2.4275.1 x2, \(\Q(\sqrt{5}, \sqrt{-19})\), 8.2.3125131875.2 x2, 8.2.3125131875.1 x2, 8.0.6597500625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |