Normalized defining polynomial
\( x^{16} - 8 x^{15} + 16 x^{14} + 28 x^{13} - 100 x^{12} - 128 x^{11} + 478 x^{10} + 404 x^{9} - 1586 x^{8} - 348 x^{7} + 2548 x^{6} - 300 x^{5} - 1715 x^{4} + 484 x^{3} + 358 x^{2} - 132 x + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525688174246906640625=3^{12}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{56} a^{12} - \frac{3}{28} a^{11} + \frac{3}{28} a^{10} - \frac{3}{56} a^{9} - \frac{1}{56} a^{8} + \frac{3}{14} a^{7} + \frac{1}{8} a^{6} - \frac{1}{14} a^{5} - \frac{11}{56} a^{4} + \frac{25}{56} a^{3} - \frac{23}{56} a^{2} + \frac{25}{56} a + \frac{3}{8}$, $\frac{1}{56} a^{13} - \frac{1}{28} a^{11} + \frac{5}{56} a^{10} - \frac{5}{56} a^{9} + \frac{3}{28} a^{8} - \frac{5}{56} a^{7} + \frac{5}{28} a^{6} - \frac{1}{8} a^{5} - \frac{13}{56} a^{4} - \frac{27}{56} a^{3} + \frac{27}{56} a^{2} + \frac{17}{56} a - \frac{1}{4}$, $\frac{1}{2296} a^{14} - \frac{1}{328} a^{13} - \frac{5}{1148} a^{12} + \frac{151}{2296} a^{11} - \frac{23}{1148} a^{10} - \frac{173}{2296} a^{9} + \frac{31}{2296} a^{8} + \frac{565}{2296} a^{7} + \frac{57}{328} a^{6} - \frac{44}{287} a^{5} - \frac{253}{1148} a^{4} - \frac{503}{1148} a^{3} + \frac{73}{574} a^{2} + \frac{661}{2296} a + \frac{33}{82}$, $\frac{1}{4093768} a^{15} + \frac{221}{1023442} a^{14} + \frac{5807}{4093768} a^{13} - \frac{2001}{584824} a^{12} - \frac{207691}{4093768} a^{11} + \frac{216075}{4093768} a^{10} - \frac{63216}{511721} a^{9} - \frac{50279}{511721} a^{8} + \frac{201619}{1023442} a^{7} - \frac{807767}{4093768} a^{6} - \frac{70631}{292412} a^{5} + \frac{484563}{2046884} a^{4} - \frac{180615}{1023442} a^{3} + \frac{1252869}{4093768} a^{2} - \frac{167847}{584824} a - \frac{67761}{292412}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17}{1148} a^{14} - \frac{17}{164} a^{13} + \frac{51}{328} a^{12} + \frac{17}{41} a^{11} - \frac{141}{164} a^{10} - \frac{647}{328} a^{9} + \frac{1199}{328} a^{8} + \frac{6899}{1148} a^{7} - \frac{3761}{328} a^{6} - \frac{161}{41} a^{5} + \frac{4647}{328} a^{4} - \frac{2069}{328} a^{3} - \frac{9547}{2296} a^{2} + \frac{10051}{2296} a - \frac{145}{328} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23382.8111247 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |