Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 92 x^{13} + 164 x^{12} - 244 x^{11} + 342 x^{10} + 32 x^{9} - 1033 x^{8} + 2924 x^{7} - 2214 x^{6} - 844 x^{5} + 4286 x^{4} - 3832 x^{3} + 2390 x^{2} - 604 x + 109 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3524840520547043444260864=2^{32}\cdot 7^{6}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{51} a^{13} - \frac{4}{51} a^{12} - \frac{8}{51} a^{11} + \frac{8}{51} a^{10} + \frac{6}{17} a^{8} - \frac{4}{51} a^{7} + \frac{22}{51} a^{6} + \frac{1}{17} a^{5} + \frac{13}{51} a^{4} - \frac{7}{17} a^{3} + \frac{3}{17} a^{2} + \frac{2}{51} a + \frac{3}{17}$, $\frac{1}{28407} a^{14} - \frac{125}{28407} a^{13} - \frac{92}{1671} a^{12} - \frac{826}{28407} a^{11} + \frac{4438}{28407} a^{10} + \frac{1735}{28407} a^{9} + \frac{13645}{28407} a^{8} + \frac{4790}{28407} a^{7} - \frac{13267}{28407} a^{6} - \frac{9547}{28407} a^{5} - \frac{13171}{28407} a^{4} - \frac{256}{1671} a^{3} - \frac{300}{9469} a^{2} + \frac{10987}{28407} a + \frac{3212}{28407}$, $\frac{1}{78074976699418204671} a^{15} + \frac{598906018843184}{78074976699418204671} a^{14} - \frac{704338314817082188}{78074976699418204671} a^{13} + \frac{1494271640816086437}{26024992233139401557} a^{12} - \frac{2243584495169007196}{26024992233139401557} a^{11} + \frac{5264470217114399279}{78074976699418204671} a^{10} - \frac{1248809426364575915}{78074976699418204671} a^{9} - \frac{34312771955666043850}{78074976699418204671} a^{8} - \frac{601495537021315165}{26024992233139401557} a^{7} - \frac{10471578998165907070}{26024992233139401557} a^{6} + \frac{15279962769065379478}{78074976699418204671} a^{5} + \frac{35470573646073280006}{78074976699418204671} a^{4} - \frac{4757531370517236890}{78074976699418204671} a^{3} + \frac{10741362943805094489}{26024992233139401557} a^{2} - \frac{18021971519636868140}{78074976699418204671} a - \frac{1364790334042865897}{78074976699418204671}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{37047708773092}{8245324395334059} a^{15} - \frac{306502302067078}{8245324395334059} a^{14} + \frac{1404039819175900}{8245324395334059} a^{13} - \frac{3684546822812833}{8245324395334059} a^{12} + \frac{6608046299532820}{8245324395334059} a^{11} - \frac{9672850504271785}{8245324395334059} a^{10} + \frac{13369572248424368}{8245324395334059} a^{9} + \frac{279132040917461}{8245324395334059} a^{8} - \frac{42221297584361860}{8245324395334059} a^{7} + \frac{39528487038181373}{2748441465111353} a^{6} - \frac{99350022553071986}{8245324395334059} a^{5} - \frac{40305603592046603}{8245324395334059} a^{4} + \frac{63479802762411142}{2748441465111353} a^{3} - \frac{162807516981138857}{8245324395334059} a^{2} + \frac{26529166515543440}{2748441465111353} a - \frac{4598435985114987}{2748441465111353} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 540377.995509 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2.D_6$ (as 16T754):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$ |
| Character table for $Q_8:C_2^2.D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.4.32368.1, 8.0.16762998784.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |