Normalized defining polynomial
\( x^{16} - 6 x^{15} + 39 x^{14} - 112 x^{13} + 292 x^{12} - 10 x^{11} - 1482 x^{10} + 6826 x^{9} - 12036 x^{8} + 5804 x^{7} + 35844 x^{6} - 102864 x^{5} + 105348 x^{4} - 10468 x^{3} - 185116 x^{2} + 46280 x + 233456 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3512479453921000000000000=2^{12}\cdot 5^{12}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{1929813197575310594023635567351954232} a^{15} + \frac{22807963477060085694182218078363927}{241226649696913824252954445918994279} a^{14} + \frac{111186588063142039942505363671860139}{1929813197575310594023635567351954232} a^{13} + \frac{6839180012857170091563889282571943}{964906598787655297011817783675977116} a^{12} + \frac{31581610226775892896414700509180369}{482453299393827648505908891837988558} a^{11} - \frac{132014379353237945049231806806485125}{964906598787655297011817783675977116} a^{10} - \frac{215905762279526220810884112144898647}{964906598787655297011817783675977116} a^{9} - \frac{171974065016086238196918411998133421}{964906598787655297011817783675977116} a^{8} + \frac{6773512620958511147981124643397999}{241226649696913824252954445918994279} a^{7} - \frac{28186127658161765826255865294467549}{241226649696913824252954445918994279} a^{6} + \frac{169615581219093543493354452588274441}{482453299393827648505908891837988558} a^{5} + \frac{45568126451064364668333999357322509}{241226649696913824252954445918994279} a^{4} - \frac{11061540296588680647114167432837237}{482453299393827648505908891837988558} a^{3} - \frac{80721266090052353041949585890566599}{482453299393827648505908891837988558} a^{2} + \frac{24949967085182864920793548319987867}{482453299393827648505908891837988558} a + \frac{42977644485978188930313303187756524}{241226649696913824252954445918994279}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 137097.711884 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.3700.1, 8.0.13690000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 5 | Data not computed | ||||||
| $37$ | 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.8.6.2 | $x^{8} + 333 x^{4} + 34225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |