Normalized defining polynomial
\( x^{16} - 6 x^{15} + 42 x^{14} - 138 x^{13} + 540 x^{12} - 1092 x^{11} + 4022 x^{10} - 6074 x^{9} + 15771 x^{8} - 19660 x^{7} + 39070 x^{6} - 37690 x^{5} + 58760 x^{4} - 39050 x^{3} + 50300 x^{2} - 20300 x + 21025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(351205590630400000000000000=2^{28}\cdot 5^{14}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{5} a^{11} + \frac{2}{15} a^{10} - \frac{1}{5} a^{9} + \frac{1}{3} a^{8} + \frac{1}{5} a^{7} + \frac{2}{15} a^{6} + \frac{1}{15} a^{5} + \frac{2}{5} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{4}{15} a^{11} - \frac{2}{5} a^{10} + \frac{2}{15} a^{9} + \frac{1}{5} a^{8} + \frac{1}{3} a^{7} - \frac{2}{15} a^{6} - \frac{1}{5} a^{5} + \frac{1}{15} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{15} a^{14} - \frac{1}{3} a^{10} + \frac{2}{5} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{2}{5} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{65654555586742221804851041986465} a^{15} + \frac{1352905014063347928040475331644}{65654555586742221804851041986465} a^{14} + \frac{887085668926245313781984460769}{65654555586742221804851041986465} a^{13} - \frac{790749672335584697996278805584}{65654555586742221804851041986465} a^{12} - \frac{2997302769176640401026561271269}{21884851862247407268283680662155} a^{11} - \frac{7646819085595265468395034472147}{21884851862247407268283680662155} a^{10} - \frac{5542954559838902691426984248297}{21884851862247407268283680662155} a^{9} - \frac{2340605174406872404908157087433}{65654555586742221804851041986465} a^{8} - \frac{6595196677053012282767564967309}{21884851862247407268283680662155} a^{7} + \frac{27450897879804444621292229110244}{65654555586742221804851041986465} a^{6} - \frac{1695430647973360426245891604304}{21884851862247407268283680662155} a^{5} + \frac{13816779788726837809220356671556}{65654555586742221804851041986465} a^{4} - \frac{5025756740644671425342986332865}{13130911117348444360970208397293} a^{3} + \frac{1521348087782806598140192065148}{13130911117348444360970208397293} a^{2} - \frac{1337689046594322952115492406513}{4376970372449481453656736132431} a - \frac{98372869963501861868570713948}{452790038529256702102420979217}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{24}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28495.2195483 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.4.22000.1, 4.4.4400.1, 8.0.4685120000000.11, 8.0.4685120000000.1, 8.8.7744000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |