Normalized defining polynomial
\( x^{16} - 7 x^{15} - 41 x^{14} + 169 x^{13} + 754 x^{12} - 9042 x^{11} + 21231 x^{10} + 456417 x^{9} - 626929 x^{8} - 265833 x^{7} + 14729992 x^{6} + 16905736 x^{5} + 247420336 x^{4} - 241209680 x^{3} + 1308458752 x^{2} + 170454528 x + 7902260224 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3508724832059361738820170787833596729=67^{4}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{15}{64} a^{5} - \frac{1}{64} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{7} - \frac{3}{64} a^{6} + \frac{1}{16} a^{5} + \frac{15}{64} a^{4} - \frac{3}{16} a^{2}$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{11} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{1}{64} a^{8} + \frac{1}{128} a^{7} + \frac{31}{128} a^{5} - \frac{3}{32} a^{4} + \frac{9}{32} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{512} a^{14} - \frac{1}{256} a^{13} - \frac{1}{512} a^{12} + \frac{7}{256} a^{9} - \frac{11}{512} a^{8} + \frac{3}{256} a^{7} - \frac{25}{512} a^{6} - \frac{29}{256} a^{5} - \frac{23}{128} a^{4} - \frac{3}{64} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{3129120134505965419762886289855359983516672290829208808448} a^{15} + \frac{576346024688689535122864704602390828242699475776003489}{1564560067252982709881443144927679991758336145414604404224} a^{14} + \frac{491441615825310745561823697801244728745590176973132165}{284465466773269583614807844532305453046970208257200800768} a^{13} - \frac{5950056473348972237222827865189286589809707112562732107}{782280033626491354940721572463839995879168072707302202112} a^{12} + \frac{1977794570991989581340865546881577075476306173107144149}{391140016813245677470360786231919997939584036353651101056} a^{11} + \frac{38774172609827427246296668871264675023675536902707506503}{1564560067252982709881443144927679991758336145414604404224} a^{10} + \frac{54331264585162382062009028387137320636717393220427858141}{3129120134505965419762886289855359983516672290829208808448} a^{9} - \frac{28591451680669538173401755213677686990714218223969967243}{1564560067252982709881443144927679991758336145414604404224} a^{8} + \frac{87307061586682678862710702334511425840607523073944313567}{3129120134505965419762886289855359983516672290829208808448} a^{7} - \frac{71794491779518736528488090384553645215285776784725248691}{1564560067252982709881443144927679991758336145414604404224} a^{6} - \frac{188493696957401721346492825179752088153645156216452669415}{782280033626491354940721572463839995879168072707302202112} a^{5} - \frac{12117513093572487290184127692515493797088007000985978301}{391140016813245677470360786231919997939584036353651101056} a^{4} - \frac{8950173248508014695729085180046936036584102711844711549}{48892502101655709683795098278989999742448004544206387632} a^{3} - \frac{4310191451088188120544257319662906172073426369567839931}{12223125525413927420948774569747499935612001136051596908} a^{2} - \frac{4508872528061426075545114804438487239544934577014025735}{12223125525413927420948774569747499935612001136051596908} a + \frac{201108502336868363637044521482114535535766303581193157}{3055781381353481855237193642436874983903000284012899227}$
Class group and class number
$C_{113}$, which has order $113$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1761562788020 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.0.44231334895529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||
| 89 | Data not computed | ||||||