Normalized defining polynomial
\( x^{16} - 5 x^{15} - 30 x^{14} + 155 x^{13} + 1382 x^{12} - 11049 x^{11} - 6878 x^{10} + 160413 x^{9} + 555525 x^{8} - 5666394 x^{7} + 6522992 x^{6} + 23232976 x^{5} + 155453472 x^{4} - 1414547264 x^{3} + 4169879872 x^{2} - 5388767872 x + 4052037632 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3508724832059361738820170787833596729=67^{4}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} + \frac{7}{32} a^{5} - \frac{1}{32} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{8} - \frac{3}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{3}{32} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{12} - \frac{1}{64} a^{10} - \frac{7}{128} a^{9} + \frac{3}{128} a^{8} - \frac{7}{64} a^{7} + \frac{1}{16} a^{6} + \frac{13}{128} a^{5} + \frac{15}{64} a^{4} - \frac{1}{16} a^{3} + \frac{7}{16} a^{2} + \frac{3}{8} a$, $\frac{1}{256} a^{13} - \frac{1}{128} a^{11} + \frac{1}{256} a^{10} - \frac{5}{256} a^{9} - \frac{3}{128} a^{8} - \frac{1}{32} a^{7} + \frac{5}{256} a^{6} + \frac{11}{128} a^{5} - \frac{1}{16} a^{4} - \frac{5}{32} a^{3} - \frac{1}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{57088} a^{14} + \frac{41}{28544} a^{13} - \frac{55}{14272} a^{12} - \frac{59}{57088} a^{11} + \frac{145}{57088} a^{10} + \frac{531}{28544} a^{9} + \frac{1699}{28544} a^{8} + \frac{4393}{57088} a^{7} + \frac{29}{892} a^{6} - \frac{587}{28544} a^{5} - \frac{1875}{14272} a^{4} - \frac{509}{3568} a^{3} + \frac{1427}{3568} a^{2} + \frac{335}{1784} a + \frac{65}{223}$, $\frac{1}{102518925930058704927700837565106718470972390904832} a^{15} - \frac{33475564347579385069510844979924037206907641}{9319902357278064084336439778646065315542944627712} a^{14} - \frac{44722202261535140009549448509567514146324616353}{25629731482514676231925209391276679617743097726208} a^{13} + \frac{221652814250871748622376226137014071633760317531}{102518925930058704927700837565106718470972390904832} a^{12} + \frac{162059161198312315684771338120159112410947261303}{25629731482514676231925209391276679617743097726208} a^{11} + \frac{1169467018041141949251396040759293548798506676623}{102518925930058704927700837565106718470972390904832} a^{10} - \frac{394876495190503941526349022008861928231739902879}{12814865741257338115962604695638339808871548863104} a^{9} + \frac{1843541120818169823701022590946798511284215066485}{102518925930058704927700837565106718470972390904832} a^{8} - \frac{12387459835515261538507656388085686730191669632225}{102518925930058704927700837565106718470972390904832} a^{7} + \frac{2126755612372043035136949815269675907904736225249}{25629731482514676231925209391276679617743097726208} a^{6} + \frac{552367872483772126298234633405456875184297907533}{3203716435314334528990651173909584952217887215776} a^{5} - \frac{513369766396877852064406339813273203545403138891}{6407432870628669057981302347819169904435774431552} a^{4} + \frac{192617067621223355466339232469881546857479812791}{3203716435314334528990651173909584952217887215776} a^{3} - \frac{514538477526692332268202215528836242347031346965}{1601858217657167264495325586954792476108943607888} a^{2} - \frac{490183601022807004475369497404643846393677527825}{1601858217657167264495325586954792476108943607888} a + \frac{26665945306573727795490882552658205986047334853}{100116138603572954030957849184674529756808975493}$
Class group and class number
$C_{113}$, which has order $113$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1890544540260 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.0.44231334895529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||
| 89 | Data not computed | ||||||