Normalized defining polynomial
\( x^{16} - 7 x^{15} + 80 x^{14} - 285 x^{13} - 278 x^{12} - 2577 x^{11} + 390922 x^{10} - 1082129 x^{9} + 9064381 x^{8} - 99454552 x^{7} - 680012525 x^{6} - 6407302484 x^{5} - 14729219316 x^{4} + 64445226783 x^{3} + 1579747491060 x^{2} + 7868587088456 x + 16658388554993 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35079212407887857597919870221838606532086673=13^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $526.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{15} - \frac{382061391836111089449840259312762528112605466620151376852758128468553439130756046788680337}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{14} - \frac{230465825699783818287377261283240744094355180976452672507923236253222041193098310452699524}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{13} - \frac{411122247071003244110343120618322177755639330671396351901616640259215661099953378025001184}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{12} + \frac{226270958912684777370838393930125454499477538489438964847897476061454646637644491081990263}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{11} + \frac{259067941962452718147540952037428335250371997606099961259624431114275815620928923602712798}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{10} + \frac{107773287392125798104701856483699270967825455755508288298315120973053447536825446987814409}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{9} - \frac{138400912582272761473072538898687134547104193690052204912753998956006702130418100783727118}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{8} - \frac{197237564687668891290674857569566229667579642676763668141622393822108507700351815719200469}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{7} - \frac{278635675582024976786411766580954916122636513674431946954461336790157791488854259752671822}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{6} + \frac{199692469311235131133067481252891471519780373848559972923753369389149618509573741168374876}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{5} + \frac{144714336318212187238701718362184845542450337330574581846427408855564250328738269499699345}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{4} + \frac{254660980262530405504774766282347049186045960859190779712356513384892853801012236955157790}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{3} + \frac{108865172540882542262851396314338517011829454600762013263554789054974728503415631359623366}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a^{2} - \frac{18013051769959533702845845315182764884429774657575066985387148880415810810381578171913416}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101} a + \frac{107387521018690343767171679498531516023984032818653302996166151917002959403458834311273930}{868448371600397398913820899750458491188310203645727567821722340276999529716725397453736101}$
Class group and class number
$C_{15}\times C_{74460}$, which has order $1116900$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487222110.331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.65743873.1, 8.8.53323682598564071473.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 73 | Data not computed | ||||||