Normalized defining polynomial
\( x^{16} - 44 x^{14} + 722 x^{12} - 5280 x^{10} + 21761 x^{8} - 48180 x^{6} + 53372 x^{4} - 8624 x^{2} + 38416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35074927889488281600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1560=2^{3}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(1091,·)$, $\chi_{1560}(961,·)$, $\chi_{1560}(521,·)$, $\chi_{1560}(779,·)$, $\chi_{1560}(209,·)$, $\chi_{1560}(259,·)$, $\chi_{1560}(859,·)$, $\chi_{1560}(1249,·)$, $\chi_{1560}(1379,·)$, $\chi_{1560}(131,·)$, $\chi_{1560}(1169,·)$, $\chi_{1560}(649,·)$, $\chi_{1560}(1171,·)$, $\chi_{1560}(1481,·)$, $\chi_{1560}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{14} a^{7} - \frac{1}{2} a^{3} - \frac{3}{7} a$, $\frac{1}{56} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{28} a^{2} - \frac{1}{2}$, $\frac{1}{56} a^{9} - \frac{1}{28} a^{7} + \frac{1}{8} a^{5} + \frac{11}{28} a^{3} - \frac{1}{2} a^{2} + \frac{3}{14} a$, $\frac{1}{112} a^{10} - \frac{1}{112} a^{8} - \frac{1}{28} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{27}{112} a^{4} - \frac{25}{56} a^{2} + \frac{3}{14} a - \frac{1}{4}$, $\frac{1}{112} a^{11} - \frac{1}{112} a^{9} + \frac{1}{112} a^{7} - \frac{1}{4} a^{6} - \frac{27}{112} a^{5} - \frac{1}{4} a^{4} + \frac{3}{56} a^{3} + \frac{9}{28} a$, $\frac{1}{11760} a^{12} - \frac{23}{5880} a^{10} - \frac{1}{980} a^{8} + \frac{125}{588} a^{6} - \frac{979}{3920} a^{4} - \frac{2603}{5880} a^{2} - \frac{1}{2} a + \frac{1}{60}$, $\frac{1}{164640} a^{13} + \frac{73}{20580} a^{11} + \frac{13}{1715} a^{9} + \frac{103}{16464} a^{7} - \frac{8119}{54880} a^{5} - \frac{1}{4} a^{4} - \frac{12263}{82320} a^{3} - \frac{1}{4} a^{2} - \frac{59}{840} a$, $\frac{1}{3079591200} a^{14} + \frac{1411}{34217680} a^{12} - \frac{46889}{96237225} a^{10} - \frac{6977491}{1539795600} a^{8} - \frac{121684217}{3079591200} a^{6} - \frac{1}{4} a^{5} + \frac{5403287}{192474450} a^{4} - \frac{1}{4} a^{3} - \frac{444091}{3666180} a^{2} - \frac{1}{2} a - \frac{332341}{1122300}$, $\frac{1}{6159182400} a^{15} + \frac{41}{17108840} a^{13} + \frac{7723141}{3079591200} a^{11} + \frac{9614107}{1539795600} a^{9} - \frac{44806667}{6159182400} a^{7} - \frac{1}{4} a^{6} + \frac{244445813}{1539795600} a^{5} - \frac{1}{4} a^{4} - \frac{328256}{6415815} a^{3} + \frac{6876473}{15712200} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{30450} a^{14} - \frac{113}{85260} a^{12} + \frac{7853}{426300} a^{10} - \frac{9337}{106575} a^{8} + \frac{55687}{426300} a^{6} + \frac{124963}{426300} a^{4} - \frac{19513}{21315} a^{2} + \frac{964}{2175} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546536.633433 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |