Properties

Label 16.0.35074927889...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}$
Root discriminant $39.50$
Ramified primes $2, 3, 5, 13$
Class number $256$ (GRH)
Class group $[4, 8, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -68, 4684, 3616, 19433, -21740, 45816, -22604, 19562, -4648, 4842, -1000, 539, -64, 34, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 34*x^14 - 64*x^13 + 539*x^12 - 1000*x^11 + 4842*x^10 - 4648*x^9 + 19562*x^8 - 22604*x^7 + 45816*x^6 - 21740*x^5 + 19433*x^4 + 3616*x^3 + 4684*x^2 - 68*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 34*x^14 - 64*x^13 + 539*x^12 - 1000*x^11 + 4842*x^10 - 4648*x^9 + 19562*x^8 - 22604*x^7 + 45816*x^6 - 21740*x^5 + 19433*x^4 + 3616*x^3 + 4684*x^2 - 68*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 34 x^{14} - 64 x^{13} + 539 x^{12} - 1000 x^{11} + 4842 x^{10} - 4648 x^{9} + 19562 x^{8} - 22604 x^{7} + 45816 x^{6} - 21740 x^{5} + 19433 x^{4} + 3616 x^{3} + 4684 x^{2} - 68 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(35074927889488281600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1560=2^{3}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(389,·)$, $\chi_{1560}(961,·)$, $\chi_{1560}(1481,·)$, $\chi_{1560}(781,·)$, $\chi_{1560}(209,·)$, $\chi_{1560}(1429,·)$, $\chi_{1560}(989,·)$, $\chi_{1560}(1249,·)$, $\chi_{1560}(1301,·)$, $\chi_{1560}(1169,·)$, $\chi_{1560}(649,·)$, $\chi_{1560}(181,·)$, $\chi_{1560}(521,·)$, $\chi_{1560}(701,·)$, $\chi_{1560}(469,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{22} a^{11} - \frac{1}{11} a^{10} + \frac{1}{22} a^{9} - \frac{3}{22} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{6} + \frac{1}{22} a^{5} + \frac{4}{11} a^{4} + \frac{7}{22} a^{3} + \frac{1}{22} a^{2} - \frac{2}{11} a - \frac{2}{11}$, $\frac{1}{132} a^{12} + \frac{2}{33} a^{10} - \frac{1}{11} a^{9} - \frac{5}{22} a^{8} - \frac{5}{22} a^{7} + \frac{1}{33} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{23}{66} a^{2} + \frac{9}{22} a - \frac{41}{132}$, $\frac{1}{10428} a^{13} + \frac{5}{3476} a^{12} - \frac{23}{5214} a^{11} - \frac{283}{1738} a^{10} + \frac{29}{158} a^{9} - \frac{175}{869} a^{8} + \frac{95}{5214} a^{7} + \frac{7}{79} a^{6} + \frac{139}{1738} a^{5} - \frac{221}{1738} a^{4} + \frac{1633}{5214} a^{3} + \frac{124}{869} a^{2} - \frac{1127}{10428} a - \frac{573}{3476}$, $\frac{1}{1251360} a^{14} - \frac{1}{625680} a^{13} + \frac{1279}{1251360} a^{12} + \frac{5459}{312840} a^{11} - \frac{133999}{625680} a^{10} + \frac{3277}{52140} a^{9} + \frac{62179}{312840} a^{8} - \frac{38623}{156420} a^{7} - \frac{154061}{625680} a^{6} - \frac{23951}{52140} a^{5} + \frac{6515}{125136} a^{4} - \frac{22337}{156420} a^{3} - \frac{38699}{113760} a^{2} + \frac{91907}{625680} a - \frac{470689}{1251360}$, $\frac{1}{4106985124657242991680} a^{15} + \frac{30100510475587}{456331680517471443520} a^{14} + \frac{53549159287870703}{1368995041552414330560} a^{13} - \frac{15218102674049598809}{4106985124657242991680} a^{12} + \frac{32299147398496752031}{2053492562328621495840} a^{11} - \frac{285203052913617336191}{2053492562328621495840} a^{10} - \frac{86775343701946869491}{1026746281164310747920} a^{9} - \frac{15445442944505525857}{342248760388103582640} a^{8} + \frac{369062912944675928399}{2053492562328621495840} a^{7} + \frac{170131260595383904643}{2053492562328621495840} a^{6} - \frac{45365976410936263153}{410698512465724299168} a^{5} + \frac{42721225089041176669}{684497520776207165280} a^{4} + \frac{17285079267833751159}{456331680517471443520} a^{3} + \frac{786413070298784741729}{4106985124657242991680} a^{2} + \frac{1730202161689946385781}{4106985124657242991680} a - \frac{220407862784879972113}{821397024931448598336}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{8}\times C_{8}$, which has order $256$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{20168794675795241071}{1368995041552414330560} a^{15} + \frac{80619917241805505317}{1368995041552414330560} a^{14} - \frac{685448422138966675559}{1368995041552414330560} a^{13} + \frac{39047467353144338333}{41484698228861040320} a^{12} - \frac{164617875508714929957}{20742349114430520160} a^{11} + \frac{10065981098241076423051}{684497520776207165280} a^{10} - \frac{24390061756432946103559}{342248760388103582640} a^{9} + \frac{23341715167352808560011}{342248760388103582640} a^{8} - \frac{65646880158665287059923}{228165840258735721760} a^{7} + \frac{227069662204185782750657}{684497520776207165280} a^{6} - \frac{92120066253267361137977}{136899504155241433056} a^{5} + \frac{216509592421739625361453}{684497520776207165280} a^{4} - \frac{386268058160253548027761}{1368995041552414330560} a^{3} - \frac{26197869414296511656243}{456331680517471443520} a^{2} - \frac{31025030070891296492357}{456331680517471443520} a + \frac{270243580583667117005}{273799008310482866112} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 57386.4139318 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-390}) \), \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{130}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}, \sqrt{-195})\), \(\Q(\sqrt{-6}, \sqrt{65})\), \(\Q(\sqrt{-3}, \sqrt{130})\), \(\Q(\sqrt{-3}, \sqrt{65})\), \(\Q(\sqrt{-6}, \sqrt{130})\), \(\Q(\sqrt{2}, \sqrt{65})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{10}, \sqrt{-39})\), \(\Q(\sqrt{5}, \sqrt{-78})\), \(\Q(\sqrt{-15}, \sqrt{26})\), \(\Q(\sqrt{13}, \sqrt{-30})\), \(\Q(\sqrt{10}, \sqrt{-78})\), \(\Q(\sqrt{5}, \sqrt{-39})\), \(\Q(\sqrt{26}, \sqrt{-30})\), \(\Q(\sqrt{13}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-39})\), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{10}, \sqrt{26})\), \(\Q(\sqrt{-15}, \sqrt{-39})\), \(\Q(\sqrt{-30}, \sqrt{65})\), \(\Q(\sqrt{5}, \sqrt{13})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{-6}, \sqrt{26})\), \(\Q(\sqrt{-6}, \sqrt{13})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{26})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{10}, \sqrt{13})\), \(\Q(\sqrt{-30}, \sqrt{-39})\), \(\Q(\sqrt{-15}, \sqrt{-78})\), \(\Q(\sqrt{5}, \sqrt{26})\), 8.0.5922408960000.19, 8.0.5922408960000.17, 8.0.5922408960000.11, 8.0.5922408960000.3, 8.0.5922408960000.15, 8.0.5922408960000.16, 8.0.5922408960000.20, 8.0.5922408960000.2, 8.0.1445900625.1, 8.0.5922408960000.4, 8.0.5922408960000.10, 8.8.73116160000.2, 8.0.5922408960000.5, 8.0.207360000.1, 8.0.9475854336.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$