Normalized defining polynomial
\( x^{16} - 4 x^{15} + 23 x^{14} - 34 x^{13} + 88 x^{12} + 310 x^{11} - 262 x^{10} + 2441 x^{9} + 1652 x^{8} + 2997 x^{7} + 13249 x^{6} + 1204 x^{5} + 14168 x^{4} + 6713 x^{3} - 2646 x^{2} - 686 x + 343 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35007428516075131079076169=7^{6}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{1}{7} a^{2}$, $\frac{1}{35} a^{12} - \frac{2}{35} a^{11} - \frac{2}{7} a^{10} + \frac{8}{35} a^{9} - \frac{8}{35} a^{8} - \frac{3}{7} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{13}{35} a^{4} + \frac{17}{35} a^{3} + \frac{17}{35} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{35} a^{13} + \frac{1}{35} a^{11} + \frac{3}{35} a^{10} + \frac{8}{35} a^{9} - \frac{16}{35} a^{8} + \frac{1}{5} a^{7} + \frac{1}{7} a^{6} - \frac{17}{35} a^{4} - \frac{4}{35} a^{3} + \frac{12}{35} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{245} a^{14} + \frac{3}{245} a^{13} + \frac{2}{245} a^{12} - \frac{6}{245} a^{11} + \frac{102}{245} a^{10} + \frac{51}{245} a^{9} + \frac{116}{245} a^{8} - \frac{79}{245} a^{7} + \frac{16}{35} a^{6} - \frac{111}{245} a^{5} + \frac{103}{245} a^{4} + \frac{16}{35} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5766147926254449303458245} a^{15} - \frac{8575921835487406051004}{5766147926254449303458245} a^{14} + \frac{21857365340270785781839}{5766147926254449303458245} a^{13} + \frac{76884390460337862576261}{5766147926254449303458245} a^{12} + \frac{45595874301574922340849}{1153229585250889860691649} a^{11} - \frac{1438804602103904502317614}{5766147926254449303458245} a^{10} - \frac{2458145218574740126564014}{5766147926254449303458245} a^{9} - \frac{135497555184320526036572}{5766147926254449303458245} a^{8} + \frac{637689856664563260158676}{5766147926254449303458245} a^{7} + \frac{209513996233466814531167}{5766147926254449303458245} a^{6} + \frac{913944276051441443887721}{5766147926254449303458245} a^{5} + \frac{2605467362810405238680463}{5766147926254449303458245} a^{4} - \frac{170094750468729645175829}{823735418036349900494035} a^{3} + \frac{322821814731855295326831}{823735418036349900494035} a^{2} - \frac{50158316579557465423029}{117676488290907128642005} a + \frac{7748786441808794517084}{117676488290907128642005}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1690145.93466 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 4.2.5887.1, 4.2.170723.1, 8.0.845243939141.1 x2, 8.0.29146342729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29 | Data not computed | ||||||