Normalized defining polynomial
\( x^{16} - 6 x^{15} - 146 x^{14} + 822 x^{13} + 9857 x^{12} - 34753 x^{11} - 430991 x^{10} - 170920 x^{9} + 7676074 x^{8} + 35576212 x^{7} + 165000919 x^{6} + 661782541 x^{5} + 1624056654 x^{4} + 1264951561 x^{3} + 112953200 x^{2} + 3583260107 x + 27286024997 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34993857500868339818743792665125437721=41^{9}\cdot 83^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{15} + \frac{38205417857407293569122037634848418554155570094470110721093857294573158370612}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{14} + \frac{58672490941178898127393049931677624825323728726580608502333131814804797622729}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{13} + \frac{180810330171292840757211734646086118353857986643975968133832661499481959882223}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{12} + \frac{12763701790922914933313181962281406774361929774273270102161651058385747238915}{34053817122007340191774468851405136442432601662904398738568540750367136114567} a^{11} - \frac{26853742119011424277110378710108079918749840751235599674157679929226893110032}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{10} + \frac{151654758346341837656705852901988671025844642544160141260038441956964839486353}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{9} - \frac{1958046537927397084835100326361769871252331159214541809460907831602425873632}{34053817122007340191774468851405136442432601662904398738568540750367136114567} a^{8} + \frac{8676595579263635798955154579816325576349381994732971822123269038936003926106}{53513141191725820301359879623636642980965516898849769446321992607719785322891} a^{7} - \frac{4284444978987343926163734268516561585090040692221965389943619015165077982456}{53513141191725820301359879623636642980965516898849769446321992607719785322891} a^{6} - \frac{10409775543258947747391582059647267900967040063881398101087293185872396871222}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{5} - \frac{7728650271910140876234282051256056113204799113486903893710210234944315795642}{53513141191725820301359879623636642980965516898849769446321992607719785322891} a^{4} - \frac{82429276660478127992639038594585960658186851641833684777976631188682815890633}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{3} + \frac{36547492429555200940577531677383282700419070124332328661573818626606735516527}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a^{2} + \frac{151493996237902805071778242599931588942527317390464603095451325598927744624982}{374591988342080742109519157365456500866758618291948386124253948254038497260237} a + \frac{1160039383983158201177538915136053512158769368086342313651210131139866618307}{4864831017429620027396352693057876634633228808986342676938362964338162302081}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58262717024.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 4.0.282449.1, 8.0.3270874941641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $83$ | 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |